Tiktok-Talent-Info/endpoints/image.py

72 lines
2.7 KiB
Python

from fastapi import UploadFile, Form
from fastapi.responses import JSONResponse
import base64
import io
import asyncio
import numpy as np
from PIL import Image
from pipeline_setup import pipe, IMAGE_TOKEN
from utils.image_processing import encode_image_base64
async def image_query(file: UploadFile, question: str = Form(...)):
"""
API endpoint to process an image with the user's query.
"""
try:
if file.content_type not in ["image/jpeg", "image/png"]:
return JSONResponse({"query": question, "error": "Unsupported file type."})
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
encoded_image_base64 = encode_image_base64(image)
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
response = await asyncio.to_thread(pipe, (question, image))
return JSONResponse({"query": question, "response": response.text})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def image_query(image: np.ndarray, question: str):
# """
# API endpoint to process an image (as numpy array) with the user's query.
# """
# try:
# # Convert the numpy array to a PIL Image
# image = Image.fromarray(image).convert("RGB").resize((512, 512))
# # Encode the image to base64 (optional, if needed by your pipeline)
# buffered = io.BytesIO()
# image.save(buffered, format="JPEG")
# encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# # Prepare the query with the image token
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# # Query the model
# response = await asyncio.to_thread(pipe, (question, image))
# return {"query": question, "response": response.text}
# except Exception as e:
# return {"query": question, "error": str(e)}
# def image_query(image_path: str, question: str):
# try:
# print("image_path in image_query...")
# with open(image_path, "rb") as file:
# image_data = file.read()
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
# encoded_image_base64 = encode_image_base64(image)
# # Prepare the question with the image token
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# # Run model inference (blocking call, but can be async)
# response = pipe((question_with_image_token, image))
# return {"query": question, "response": response.text}
# except Exception as e:
# return {"query": question, "error": str(e)}