Tiktok-Talent-Info/endpoints/video.py
2025-05-12 11:22:46 +08:00

319 lines
13 KiB
Python

from fastapi import UploadFile, Form
from fastapi.responses import JSONResponse
from pipeline_setup import pipe
from utils.image_processing import encode_image_base64
from utils.video_processing import split_video_into_segments, extract_motion_key_frames, extract_audio_from_video
from utils.audio_transcription import transcribe_audio
import os
import torch
import json
import time
import asyncio
import mimetypes
from concurrent.futures import ThreadPoolExecutor
def save_checkpoint(video_id, checkpoint_data):
checkpoint_path = f"/tmp/{video_id}_progress.json"
with open(checkpoint_path, "w") as f:
json.dump(checkpoint_data, f)
def load_checkpoint(video_id):
checkpoint_path = f"/tmp/{video_id}_progress.json"
if os.path.exists(checkpoint_path):
with open(checkpoint_path, "r") as f:
return json.load(f)
return None
# api
# async def video_query(file: UploadFile, question: str = Form(...)):
# try:
# print("Processing video...")
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
# overall_start_time = time.time()
# video_data = await file.read()
# video_id = str(hash(video_data)) # Unique ID for checkpointing
# temp_video_path = f"/tmp/{video_id}.mp4"
# with open(temp_video_path, "wb") as temp_video_file:
# temp_video_file.write(video_data)
# video_reading_time = time.time()
# segments = split_video_into_segments(temp_video_path, segment_duration=30)
# checkpoint = load_checkpoint(video_id) or {}
# aggregated_responses = checkpoint.get("responses", [])
# segment_timings = checkpoint.get("timings", [])
# completed_segments = set(checkpoint.get("completed_segments", []))
# preprocessed_segments = set(checkpoint.get("preprocessed_segments", []))
# inference_completed_segments = set(checkpoint.get("inference_completed_segments", []))
# for i, segment_path in enumerate(segments):
# if i in completed_segments:
# print(f"Skipping already processed segment {i+1}")
# continue
# segment_start_time = time.time()
# if i not in preprocessed_segments:
# frame_start_time = time.time()
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# frame_time = time.time()
# audio_start_time = time.time()
# audio_path = extract_audio_from_video(segment_path)
# transcribed_text = transcribe_audio(audio_path)
# audio_time = time.time()
# preprocessed_segments.add(i)
# save_checkpoint(video_id, {
# "responses": aggregated_responses,
# "timings": segment_timings,
# "completed_segments": list(completed_segments),
# "preprocessed_segments": list(preprocessed_segments),
# "inference_completed_segments": list(inference_completed_segments)
# })
# if i not in inference_completed_segments:
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# question_with_frames = "".join([f"Frame{j+1}: {{IMAGE_TOKEN}}\n" for j, _ in enumerate(imgs)])
# question_with_frames += combined_query
# content = [{"type": "text", "text": question_with_frames}] + [
# {"type": "image_url", "image_url": {"max_dynamic_patch": 1, "url": f"data:image/jpeg;base64,{encode_image_base64(img)}"}}
# for img in imgs
# ]
# inference_start_time = time.time()
# messages = [dict(role="user", content=content)]
# response = await asyncio.to_thread(pipe, messages)
# inference_time = time.time()
# aggregated_responses.append(response.text)
# inference_completed_segments.add(i)
# save_checkpoint(video_id, {
# "responses": aggregated_responses,
# "timings": segment_timings,
# "completed_segments": list(completed_segments),
# "preprocessed_segments": list(preprocessed_segments),
# "inference_completed_segments": list(inference_completed_segments)
# })
# segment_timings.append({
# "segment_index": i + 1,
# "segment_processing_time": inference_time - segment_start_time,
# "frame_extraction_time": frame_time - frame_start_time,
# "audio_extraction_time": audio_time - audio_start_time,
# "model_inference_time": inference_time - inference_start_time
# })
# completed_segments.add(i)
# save_checkpoint(video_id, {
# "responses": aggregated_responses,
# "timings": segment_timings,
# "completed_segments": list(completed_segments),
# "preprocessed_segments": list(preprocessed_segments),
# "inference_completed_segments": list(inference_completed_segments)
# })
# return JSONResponse({
# "question": question,
# "responses": aggregated_responses,
# "timings": {
# "video_reading_time": video_reading_time - overall_start_time,
# "total_segments": len(segments),
# "total_processing_time": time.time() - overall_start_time,
# "segment_details": segment_timings
# }
# })
# except Exception as e:
# return JSONResponse({"query": question, "error": str(e)})
# gradio
# async def video_query(video_path: str, question: str):
# """
# API endpoint to process a video file with the user's query.
# """
# try:
# print("Processing video...")
# if not video_path or not isinstance(video_path, str):
# return {"query": question, "error": "No video file provided or invalid file input."}
# # Determine the file type using the file extension
# file_type, _ = mimetypes.guess_type(video_path)
# if file_type is None or not file_type.startswith("video/"):
# return {"query": question, "error": "Unsupported video file type."}
# # Log the video path
# print(f"Video path: {video_path}")
# # Split the video into segments
# print("Splitting video...")
# segments = split_video_into_segments(video_path, segment_duration=30)
# print(f"Video split into {len(segments)} segments.")
# aggregated_responses = []
# segment_timings = []
# for i, segment_path in enumerate(segments):
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# # Extract key frames
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# # Extract audio and transcribe
# audio_path = extract_audio_from_video(segment_path)
# transcribed_text = transcribe_audio(audio_path)
# # Combine transcribed text with the query
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# # Prepare content for the pipeline
# question_with_frames = ""
# for j, img in enumerate(imgs):
# question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
# question_with_frames += combined_query
# content = [{"type": "text", "text": question_with_frames}]
# for img in imgs:
# content.append({
# "type": "image_url",
# "image_url": {
# "max_dynamic_patch": 1,
# "url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
# }
# })
# # Query the model
# messages = [dict(role="user", content=content)]
# response = await asyncio.to_thread(pipe, messages)
# # Aggregate response
# aggregated_responses.append(response.text)
# return {
# "question": question,
# "responses": aggregated_responses,
# }
# except Exception as e:
# return {"query": question, "error": str(e)}
# def video_query(video_path: str, question: str):
# """
# Processes a video file using the model.
# Reads the video from disk, extracts key frames, transcribes audio, and queries the model.
# """
# try:
# print("Processing video...")
# if not os.path.exists(video_path):
# return {"query": question, "error": "Video file not found."}
# # Determine the file type
# file_type, _ = mimetypes.guess_type(video_path)
# if file_type is None or not file_type.startswith("video/"):
# return {"query": question, "error": "Unsupported video file type."}
# # Split video into segments
# print("Splitting video...")
# segments = split_video_into_segments(video_path, segment_duration=30)
# print(f"Video split into {len(segments)} segments.")
# aggregated_responses = []
# segment_timings = []
# for i, segment_path in enumerate(segments):
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# # Extract key frames
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# # Extract audio and transcribe
# audio_path = extract_audio_from_video(segment_path)
# transcribed_text = transcribe_audio(audio_path)
# # Combine transcribed text with the query
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# # Prepare content for the pipeline
# question_with_frames = "".join([f"Frame{j+1}: {{IMAGE_TOKEN}}\n" for j in range(len(imgs))])
# question_with_frames += combined_query
# content = [{"type": "text", "text": question_with_frames}] + [
# {"type": "image_url", "image_url": {"max_dynamic_patch": 1, "url": f"data:image/jpeg;base64,{encode_image_base64(img)}"}}
# for img in imgs
# ]
# # Query the model
# messages = [dict(role="user", content=content)]
# response = pipe(messages)
# # Aggregate response
# aggregated_responses.append(response.text)
# return {
# "question": question,
# "responses": aggregated_responses,
# }
# except Exception as e:
# return {"query": question, "error": str(e)}
# def run_video_inference(preprocessed_data):
# """
# **Inference Step (Runs on GPU)**
# - Takes preprocessed data (key frames + transcribed audio).
# - Constructs a query for the model.
# - Runs inference on the GPU.
# - Returns the aggregated responses.
# """
# import torch
# torch.cuda.empty_cache() # Free up GPU memory before inference
# try:
# print("Starting video inference...")
# question = preprocessed_data["question"]
# segments = preprocessed_data["segments"]
# aggregated_responses = []
# for segment in segments:
# segment_index = segment["segment_index"]
# transcribed_text = segment["transcription"]
# encoded_imgs = segment["encoded_images"]
# print(f"Running inference on segment {segment_index + 1}...")
# # Prepare query content
# question_with_frames = "".join(
# [f"Frame{j+1}: {{IMAGE_TOKEN}}\n" for j in range(len(encoded_imgs))]
# )
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# question_with_frames += combined_query
# content = [{"type": "text", "text": question_with_frames}] + [
# {"type": "image_url", "image_url": {"max_dynamic_patch": 1, "url": f"data:image/jpeg;base64,{img}"}}
# for img in encoded_imgs
# ]
# # Query the model (GPU-heavy operation)
# messages = [dict(role="user", content=content)]
# response = pipe(messages)
# # Collect responses
# aggregated_responses.append(response.text)
# return {
# "question": question,
# "responses": aggregated_responses,
# }
# except Exception as e:
# return {"query": question, "error": str(e)}