optimized on 2 gpus
This commit is contained in:
parent
5c00be4edd
commit
7b80572f09
BIN
__pycache__/locustfile.cpython-312.pyc
Normal file
BIN
__pycache__/locustfile.cpython-312.pyc
Normal file
Binary file not shown.
Binary file not shown.
@ -8,44 +8,44 @@ from PIL import Image
|
||||
from pipeline_setup import pipe, IMAGE_TOKEN
|
||||
from utils.image_processing import encode_image_base64
|
||||
|
||||
# async def image_query(file: UploadFile, question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process an image with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# if file.content_type not in ["image/jpeg", "image/png"]:
|
||||
# return JSONResponse({"query": question, "error": "Unsupported file type."})
|
||||
async def image_query(file: UploadFile, question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process an image with the user's query.
|
||||
"""
|
||||
try:
|
||||
if file.content_type not in ["image/jpeg", "image/png"]:
|
||||
return JSONResponse({"query": question, "error": "Unsupported file type."})
|
||||
|
||||
# image_data = await file.read()
|
||||
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
||||
# encoded_image_base64 = encode_image_base64(image)
|
||||
image_data = await file.read()
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
||||
encoded_image_base64 = encode_image_base64(image)
|
||||
|
||||
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
# response = await asyncio.to_thread(pipe, (question, image))
|
||||
# return JSONResponse({"query": question, "response": response.text})
|
||||
# except Exception as e:
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
response = await asyncio.to_thread(pipe, (question, image))
|
||||
return JSONResponse({"query": question, "response": response.text})
|
||||
except Exception as e:
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
# import mimetypes
|
||||
async def image_query(image: np.ndarray, question: str):
|
||||
"""
|
||||
API endpoint to process an image (as numpy array) with the user's query.
|
||||
"""
|
||||
try:
|
||||
# Convert the numpy array to a PIL Image
|
||||
image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
||||
# async def image_query(image: np.ndarray, question: str):
|
||||
# """
|
||||
# API endpoint to process an image (as numpy array) with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# # Convert the numpy array to a PIL Image
|
||||
# image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
||||
|
||||
# Encode the image to base64 (optional, if needed by your pipeline)
|
||||
buffered = io.BytesIO()
|
||||
image.save(buffered, format="JPEG")
|
||||
encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
# # Encode the image to base64 (optional, if needed by your pipeline)
|
||||
# buffered = io.BytesIO()
|
||||
# image.save(buffered, format="JPEG")
|
||||
# encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
# Prepare the query with the image token
|
||||
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
# # Prepare the query with the image token
|
||||
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
|
||||
# Query the model
|
||||
response = await asyncio.to_thread(pipe, (question, image))
|
||||
return {"query": question, "response": response.text}
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
||||
# # Query the model
|
||||
# response = await asyncio.to_thread(pipe, (question, image))
|
||||
# return {"query": question, "response": response.text}
|
||||
# except Exception as e:
|
||||
# return {"query": question, "error": str(e)}
|
||||
|
@ -1,24 +1,25 @@
|
||||
import asyncio
|
||||
from fastapi import Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from asyncio import to_thread
|
||||
from pipeline_setup import pipe
|
||||
|
||||
async def text_query(question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process text input with the user's query.
|
||||
"""
|
||||
try:
|
||||
response = await asyncio.to_thread(pipe, question)
|
||||
return JSONResponse({"query": question, "response": response.text})
|
||||
except Exception as e:
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
# async def text_query(question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process text input with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# response = await to_thread(pipe, question)
|
||||
# return JSONResponse({"query": question, "response": response.text})
|
||||
# return {"query": question, "response": response.text}
|
||||
# except Exception as e:
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
async def text_query(question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process text input with the user's query.
|
||||
"""
|
||||
try:
|
||||
response = await to_thread(pipe, question)
|
||||
return {"query": question, "response": response.text}
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
||||
# return {"query": question, "error": str(e)}
|
||||
|
@ -4,140 +4,39 @@ from pipeline_setup import pipe
|
||||
from utils.image_processing import encode_image_base64
|
||||
from utils.video_processing import split_video_into_segments, extract_motion_key_frames, extract_audio_from_video
|
||||
from utils.audio_transcription import transcribe_audio
|
||||
import time
|
||||
import asyncio
|
||||
import mimetypes
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
# async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process a video file with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# print("Processing video...")
|
||||
|
||||
# # Validate file type
|
||||
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
||||
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
||||
|
||||
# # Start overall timer
|
||||
# overall_start_time = time.time()
|
||||
|
||||
# # Save the uploaded video to a temporary file
|
||||
# print("Reading video...")
|
||||
# video_data = await file.read()
|
||||
# temp_video_path = "/tmp/temp_video.mp4"
|
||||
# with open(temp_video_path, "wb") as temp_video_file:
|
||||
# temp_video_file.write(video_data)
|
||||
# print(f"Temp video saved to: {temp_video_path}")
|
||||
|
||||
# # Record the time after reading the video
|
||||
# video_reading_time = time.time()
|
||||
|
||||
# # Split the video into segments
|
||||
# print("Splitting video...")
|
||||
# segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
||||
# print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
# aggregated_responses = []
|
||||
# segment_timings = []
|
||||
|
||||
# for i, segment_path in enumerate(segments):
|
||||
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# # Start timing for the segment
|
||||
# segment_start_time = time.time()
|
||||
|
||||
# # Extract key frames
|
||||
# frame_start_time = time.time()
|
||||
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
# frame_time = time.time()
|
||||
|
||||
# # Extract audio and transcribe
|
||||
# audio_start_time = time.time()
|
||||
# audio_path = extract_audio_from_video(segment_path)
|
||||
# transcribed_text = transcribe_audio(audio_path)
|
||||
# audio_time = time.time()
|
||||
|
||||
# # Combine transcribed text with the query
|
||||
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
|
||||
# # Prepare content for the pipeline
|
||||
# question_with_frames = ""
|
||||
# for j, img in enumerate(imgs):
|
||||
# question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
||||
# question_with_frames += combined_query
|
||||
|
||||
# content = [{"type": "text", "text": question_with_frames}]
|
||||
# for img in imgs:
|
||||
# content.append({
|
||||
# "type": "image_url",
|
||||
# "image_url": {
|
||||
# "max_dynamic_patch": 1,
|
||||
# "url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
||||
# }
|
||||
# })
|
||||
|
||||
# # Query the model
|
||||
# inference_start_time = time.time()
|
||||
# messages = [dict(role="user", content=content)]
|
||||
# response = await asyncio.to_thread(pipe, messages)
|
||||
# inference_time = time.time()
|
||||
|
||||
# # Aggregate response
|
||||
# aggregated_responses.append(response.text)
|
||||
|
||||
# # Calculate timing for the segment
|
||||
# segment_timings.append({
|
||||
# "segment_index": i + 1,
|
||||
# "segment_processing_time": inference_time - segment_start_time,
|
||||
# "frame_extraction_time": frame_time - frame_start_time,
|
||||
# "audio_extraction_time": audio_time - audio_start_time,
|
||||
# "model_inference_time": inference_time - inference_start_time
|
||||
# })
|
||||
|
||||
# print(f"transcription: {transcribed_text}")
|
||||
# # print(f"content: {content}")
|
||||
|
||||
# overall_end_time = time.time()
|
||||
|
||||
# # Aggregate total timings
|
||||
# total_timings = {
|
||||
# "video_reading_time": video_reading_time - overall_start_time,
|
||||
# "total_segments": len(segments),
|
||||
# "total_processing_time": overall_end_time - overall_start_time,
|
||||
# "segment_details": segment_timings
|
||||
# }
|
||||
|
||||
# return JSONResponse({
|
||||
# "question": question,
|
||||
# "responses": aggregated_responses,
|
||||
# "timings": total_timings,
|
||||
# })
|
||||
# except Exception as e:
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
async def video_query(video_path: str, question: str):
|
||||
async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process a video file with the user's query.
|
||||
"""
|
||||
try:
|
||||
print("Processing video...")
|
||||
|
||||
if not video_path or not isinstance(video_path, str):
|
||||
return {"query": question, "error": "No video file provided or invalid file input."}
|
||||
# Validate file type
|
||||
if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
||||
return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
||||
|
||||
# Determine the file type using the file extension
|
||||
file_type, _ = mimetypes.guess_type(video_path)
|
||||
if file_type is None or not file_type.startswith("video/"):
|
||||
return {"query": question, "error": "Unsupported video file type."}
|
||||
# Start overall timer
|
||||
overall_start_time = time.time()
|
||||
|
||||
# Log the video path
|
||||
print(f"Video path: {video_path}")
|
||||
# Save the uploaded video to a temporary file
|
||||
print("Reading video...")
|
||||
video_data = await file.read()
|
||||
temp_video_path = "/tmp/temp_video.mp4"
|
||||
with open(temp_video_path, "wb") as temp_video_file:
|
||||
temp_video_file.write(video_data)
|
||||
print(f"Temp video saved to: {temp_video_path}")
|
||||
|
||||
# Record the time after reading the video
|
||||
video_reading_time = time.time()
|
||||
|
||||
# Split the video into segments
|
||||
print("Splitting video...")
|
||||
segments = split_video_into_segments(video_path, segment_duration=30)
|
||||
segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
||||
print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
aggregated_responses = []
|
||||
@ -146,12 +45,19 @@ async def video_query(video_path: str, question: str):
|
||||
for i, segment_path in enumerate(segments):
|
||||
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# Start timing for the segment
|
||||
segment_start_time = time.time()
|
||||
|
||||
# Extract key frames
|
||||
frame_start_time = time.time()
|
||||
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
frame_time = time.time()
|
||||
|
||||
# Extract audio and transcribe
|
||||
audio_start_time = time.time()
|
||||
audio_path = extract_audio_from_video(segment_path)
|
||||
transcribed_text = transcribe_audio(audio_path)
|
||||
audio_time = time.time()
|
||||
|
||||
# Combine transcribed text with the query
|
||||
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
@ -173,15 +79,110 @@ async def video_query(video_path: str, question: str):
|
||||
})
|
||||
|
||||
# Query the model
|
||||
inference_start_time = time.time()
|
||||
messages = [dict(role="user", content=content)]
|
||||
response = await asyncio.to_thread(pipe, messages)
|
||||
inference_time = time.time()
|
||||
|
||||
# Aggregate response
|
||||
aggregated_responses.append(response.text)
|
||||
|
||||
return {
|
||||
# Calculate timing for the segment
|
||||
segment_timings.append({
|
||||
"segment_index": i + 1,
|
||||
"segment_processing_time": inference_time - segment_start_time,
|
||||
"frame_extraction_time": frame_time - frame_start_time,
|
||||
"audio_extraction_time": audio_time - audio_start_time,
|
||||
"model_inference_time": inference_time - inference_start_time
|
||||
})
|
||||
|
||||
print(f"transcription: {transcribed_text}")
|
||||
# print(f"content: {content}")
|
||||
|
||||
overall_end_time = time.time()
|
||||
|
||||
# Aggregate total timings
|
||||
total_timings = {
|
||||
"video_reading_time": video_reading_time - overall_start_time,
|
||||
"total_segments": len(segments),
|
||||
"total_processing_time": overall_end_time - overall_start_time,
|
||||
"segment_details": segment_timings
|
||||
}
|
||||
|
||||
return JSONResponse({
|
||||
"question": question,
|
||||
"responses": aggregated_responses,
|
||||
}
|
||||
"timings": total_timings,
|
||||
})
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
# async def video_query(video_path: str, question: str):
|
||||
# """
|
||||
# API endpoint to process a video file with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# print("Processing video...")
|
||||
|
||||
# if not video_path or not isinstance(video_path, str):
|
||||
# return {"query": question, "error": "No video file provided or invalid file input."}
|
||||
|
||||
# # Determine the file type using the file extension
|
||||
# file_type, _ = mimetypes.guess_type(video_path)
|
||||
# if file_type is None or not file_type.startswith("video/"):
|
||||
# return {"query": question, "error": "Unsupported video file type."}
|
||||
|
||||
# # Log the video path
|
||||
# print(f"Video path: {video_path}")
|
||||
|
||||
# # Split the video into segments
|
||||
# print("Splitting video...")
|
||||
# segments = split_video_into_segments(video_path, segment_duration=30)
|
||||
# print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
# aggregated_responses = []
|
||||
# segment_timings = []
|
||||
|
||||
# for i, segment_path in enumerate(segments):
|
||||
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# # Extract key frames
|
||||
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
|
||||
# # Extract audio and transcribe
|
||||
# audio_path = extract_audio_from_video(segment_path)
|
||||
# transcribed_text = transcribe_audio(audio_path)
|
||||
|
||||
# # Combine transcribed text with the query
|
||||
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
|
||||
# # Prepare content for the pipeline
|
||||
# question_with_frames = ""
|
||||
# for j, img in enumerate(imgs):
|
||||
# question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
||||
# question_with_frames += combined_query
|
||||
|
||||
# content = [{"type": "text", "text": question_with_frames}]
|
||||
# for img in imgs:
|
||||
# content.append({
|
||||
# "type": "image_url",
|
||||
# "image_url": {
|
||||
# "max_dynamic_patch": 1,
|
||||
# "url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
||||
# }
|
||||
# })
|
||||
|
||||
# # Query the model
|
||||
# messages = [dict(role="user", content=content)]
|
||||
# response = await asyncio.to_thread(pipe, messages)
|
||||
|
||||
# # Aggregate response
|
||||
# aggregated_responses.append(response.text)
|
||||
|
||||
# return {
|
||||
# "question": question,
|
||||
# "responses": aggregated_responses,
|
||||
# }
|
||||
# except Exception as e:
|
||||
# return {"query": question, "error": str(e)}
|
||||
|
18
locustfile.py
Normal file
18
locustfile.py
Normal file
@ -0,0 +1,18 @@
|
||||
from locust import HttpUser, task, between
|
||||
|
||||
class MultiModalUser(HttpUser):
|
||||
wait_time = between(1, 3)
|
||||
|
||||
@task
|
||||
def text_query(self):
|
||||
self.client.post("/api/predict", json={"input": "What is the capital of France?"})
|
||||
|
||||
# @task
|
||||
# def image_query(self):
|
||||
# with open("test_image.jpg", "rb") as f:
|
||||
# self.client.post("/api/image_predict", files={"file": f}, data={"question": "What is in this image?"})
|
||||
|
||||
# @task
|
||||
# def video_query(self):
|
||||
# with open("test_video.mp4", "rb") as f:
|
||||
# self.client.post("/api/video_predict", files={"file": f}, data={"question": "What is happening in this video?"})
|
2
main.py
2
main.py
@ -12,7 +12,7 @@ app.post("/api/video")(video_query)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run("main:app", host="0.0.0.0", port=8080, reload=True)
|
||||
uvicorn.run("main:app", host="0.0.0.0", port=8002, reload=True)
|
||||
|
||||
# python main.py
|
||||
# uvicorn main:app --reload
|
22
multi-user.py
Normal file
22
multi-user.py
Normal file
@ -0,0 +1,22 @@
|
||||
import requests
|
||||
import threading
|
||||
|
||||
def send_request(user_id):
|
||||
url = "http://localhost:8002"
|
||||
data = {"input": f"Test input from user {user_id}"}
|
||||
response = requests.post(url, json=data)
|
||||
print(f"User {user_id} response: {response.text}")
|
||||
|
||||
def main(num_users):
|
||||
threads = []
|
||||
for i in range(num_users):
|
||||
thread = threading.Thread(target=send_request, args=(i,))
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
if __name__ == "__main__":
|
||||
num_users = 2
|
||||
main(num_users)
|
@ -1,21 +1,24 @@
|
||||
import os
|
||||
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
||||
|
||||
# Constants
|
||||
IMAGE_TOKEN = "[IMAGE_TOKEN]"
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
|
||||
|
||||
# Model initialization
|
||||
model = "OpenGVLab/InternVL2-26B-AWQ"
|
||||
pipe = pipeline(
|
||||
model,
|
||||
backend_config=TurbomindEngineConfig(
|
||||
model_format="awq",
|
||||
# tp=2,
|
||||
tp=4,
|
||||
# device_ids=[0, 1],
|
||||
session_len=12864,
|
||||
tp=2,
|
||||
# tp=4,
|
||||
session_len=2048, # 4096, 8192, 16384, 32768
|
||||
max_batch_size=1,
|
||||
cache_max_entry_count=0.05,
|
||||
cache_block_seq_len=32768,
|
||||
quant_policy=4
|
||||
)
|
||||
cache_max_entry_count=0.1, # 0.05
|
||||
cache_block_seq_len=4096, # 8192, 16384, 32768
|
||||
quant_policy=4,
|
||||
# precision="fp16",
|
||||
),
|
||||
# log_level='DEBUG'
|
||||
)
|
3
ui.py
3
ui.py
@ -1,4 +1,3 @@
|
||||
import os
|
||||
import asyncio
|
||||
import gradio as gr
|
||||
from gradio_image_prompter import ImagePrompter
|
||||
@ -6,8 +5,6 @@ from endpoints.text import text_query
|
||||
from endpoints.image import image_query
|
||||
from endpoints.video import video_query
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
|
||||
|
||||
import torch
|
||||
print("Available GPUs:", torch.cuda.device_count())
|
||||
print("Visible Devices:", [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
|
||||
|
Loading…
Reference in New Issue
Block a user