updated image and video upload

This commit is contained in:
Zixiao Wang 2025-01-24 14:11:46 +08:00
parent 37276d48f9
commit 5c00be4edd
8 changed files with 173 additions and 175 deletions

View File

@ -1,54 +1,51 @@
from fastapi import UploadFile, Form
from fastapi.responses import JSONResponse
import io
import base64
import asyncio
import numpy as np
from PIL import Image
from pipeline_setup import pipe, IMAGE_TOKEN
from utils.image_processing import encode_image_base64
async def image_query(file: UploadFile, question: str = Form(...)):
"""
API endpoint to process an image with the user's query.
"""
try:
if file.content_type not in ["image/jpeg", "image/png"]:
return JSONResponse({"query": question, "error": "Unsupported file type."})
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
encoded_image_base64 = encode_image_base64(image)
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
response = await asyncio.to_thread(pipe, (question, image))
return JSONResponse({"query": question, "response": response.text})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# import mimetypes
# async def image_query(file: UploadFile, question: str = Form(...)):
# """
# API endpoint to process an image with the user's query.
# """
# try:
# # Get the file path from the UploadFile object
# file_path = file.filename
# if file.content_type not in ["image/jpeg", "image/png"]:
# return JSONResponse({"query": question, "error": "Unsupported file type."})
# # Determine the file type using the file extension
# file_type, _ = mimetypes.guess_type(file_path)
# if file_type not in ["image/jpeg", "image/png"]:
# return {"query": question, "error": "Unsupported file type."}
# # Read the image file
# image_data = await file.read()
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
# encoded_image_base64 = encode_image_base64(image)
# # Prepare the query with the image token
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# # Query the model
# response = await asyncio.to_thread(pipe, (question, image))
# return {"query": question, "response": response.text}
# return JSONResponse({"query": question, "response": response.text})
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
# import mimetypes
async def image_query(image: np.ndarray, question: str):
"""
API endpoint to process an image (as numpy array) with the user's query.
"""
try:
# Convert the numpy array to a PIL Image
image = Image.fromarray(image).convert("RGB").resize((512, 512))
# Encode the image to base64 (optional, if needed by your pipeline)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Prepare the query with the image token
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# Query the model
response = await asyncio.to_thread(pipe, (question, image))
return {"query": question, "response": response.text}
except Exception as e:
return {"query": question, "error": str(e)}

View File

@ -3,22 +3,22 @@ from fastapi.responses import JSONResponse
from asyncio import to_thread
from pipeline_setup import pipe
async def text_query(question: str = Form(...)):
"""
API endpoint to process text input with the user's query.
"""
try:
response = await to_thread(pipe, question)
return JSONResponse({"query": question, "response": response.text})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def text_query(question: str = Form(...)):
# """
# API endpoint to process text input with the user's query.
# """
# try:
# response = await to_thread(pipe, question)
# return {"query": question, "response": response.text}
# return JSONResponse({"query": question, "response": response.text})
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
async def text_query(question: str = Form(...)):
"""
API endpoint to process text input with the user's query.
"""
try:
response = await to_thread(pipe, question)
return {"query": question, "response": response.text}
except Exception as e:
return {"query": question, "error": str(e)}

View File

@ -5,118 +5,9 @@ from utils.image_processing import encode_image_base64
from utils.video_processing import split_video_into_segments, extract_motion_key_frames, extract_audio_from_video
from utils.audio_transcription import transcribe_audio
import asyncio
import time
import mimetypes
from concurrent.futures import ThreadPoolExecutor
async def video_query(file: UploadFile, question: str = Form(...)):
"""
API endpoint to process a video file with the user's query.
"""
try:
print("Processing video...")
# Validate file type
if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
return JSONResponse({"query": question, "error": "Unsupported video file type."})
# Start overall timer
overall_start_time = time.time()
# Save the uploaded video to a temporary file
print("Reading video...")
video_data = await file.read()
temp_video_path = "/tmp/temp_video.mp4"
with open(temp_video_path, "wb") as temp_video_file:
temp_video_file.write(video_data)
print(f"Temp video saved to: {temp_video_path}")
# Record the time after reading the video
video_reading_time = time.time()
# Split the video into segments
print("Splitting video...")
segments = split_video_into_segments(temp_video_path, segment_duration=30)
print(f"Video split into {len(segments)} segments.")
aggregated_responses = []
segment_timings = []
for i, segment_path in enumerate(segments):
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# Start timing for the segment
segment_start_time = time.time()
# Extract key frames
frame_start_time = time.time()
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
frame_time = time.time()
# Extract audio and transcribe
audio_start_time = time.time()
audio_path = extract_audio_from_video(segment_path)
transcribed_text = transcribe_audio(audio_path)
audio_time = time.time()
# Combine transcribed text with the query
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# Prepare content for the pipeline
question_with_frames = ""
for j, img in enumerate(imgs):
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
question_with_frames += combined_query
content = [{"type": "text", "text": question_with_frames}]
for img in imgs:
content.append({
"type": "image_url",
"image_url": {
"max_dynamic_patch": 1,
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
}
})
# Query the model
inference_start_time = time.time()
messages = [dict(role="user", content=content)]
response = await asyncio.to_thread(pipe, messages)
inference_time = time.time()
# Aggregate response
aggregated_responses.append(response.text)
# Calculate timing for the segment
segment_timings.append({
"segment_index": i + 1,
"segment_processing_time": inference_time - segment_start_time,
"frame_extraction_time": frame_time - frame_start_time,
"audio_extraction_time": audio_time - audio_start_time,
"model_inference_time": inference_time - inference_start_time
})
print(f"transcription: {transcribed_text}")
# print(f"content: {content}")
overall_end_time = time.time()
# Aggregate total timings
total_timings = {
"video_reading_time": video_reading_time - overall_start_time,
"total_segments": len(segments),
"total_processing_time": overall_end_time - overall_start_time,
"segment_details": segment_timings
}
return JSONResponse({
"question": question,
"responses": aggregated_responses,
"timings": total_timings,
})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def video_query(file: UploadFile, question: str = Form(...)):
# """
# API endpoint to process a video file with the user's query.
@ -124,13 +15,9 @@ async def video_query(file: UploadFile, question: str = Form(...)):
# try:
# print("Processing video...")
# # Get the file path from the UploadFile object
# file_path = file.filename
# # Determine the file type using the file extension
# file_type, _ = mimetypes.guess_type(file_path)
# if file_type is None or not file_type.startswith("video/"):
# return {"query": question, "error": "Unsupported video file type."}
# # Validate file type
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
# # Start overall timer
# overall_start_time = time.time()
@ -209,6 +96,7 @@ async def video_query(file: UploadFile, question: str = Form(...)):
# })
# print(f"transcription: {transcribed_text}")
# # print(f"content: {content}")
# overall_end_time = time.time()
@ -220,10 +108,80 @@ async def video_query(file: UploadFile, question: str = Form(...)):
# "segment_details": segment_timings
# }
# return {
# return JSONResponse({
# "question": question,
# "responses": aggregated_responses,
# "timings": total_timings,
# }
# })
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
async def video_query(video_path: str, question: str):
"""
API endpoint to process a video file with the user's query.
"""
try:
print("Processing video...")
if not video_path or not isinstance(video_path, str):
return {"query": question, "error": "No video file provided or invalid file input."}
# Determine the file type using the file extension
file_type, _ = mimetypes.guess_type(video_path)
if file_type is None or not file_type.startswith("video/"):
return {"query": question, "error": "Unsupported video file type."}
# Log the video path
print(f"Video path: {video_path}")
# Split the video into segments
print("Splitting video...")
segments = split_video_into_segments(video_path, segment_duration=30)
print(f"Video split into {len(segments)} segments.")
aggregated_responses = []
segment_timings = []
for i, segment_path in enumerate(segments):
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# Extract key frames
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# Extract audio and transcribe
audio_path = extract_audio_from_video(segment_path)
transcribed_text = transcribe_audio(audio_path)
# Combine transcribed text with the query
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# Prepare content for the pipeline
question_with_frames = ""
for j, img in enumerate(imgs):
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
question_with_frames += combined_query
content = [{"type": "text", "text": question_with_frames}]
for img in imgs:
content.append({
"type": "image_url",
"image_url": {
"max_dynamic_patch": 1,
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
}
})
# Query the model
messages = [dict(role="user", content=content)]
response = await asyncio.to_thread(pipe, messages)
# Aggregate response
aggregated_responses.append(response.text)
return {
"question": question,
"responses": aggregated_responses,
}
except Exception as e:
return {"query": question, "error": str(e)}

2
flagged/log.csv Normal file
View File

@ -0,0 +1,2 @@
prompts,Response,flag,username,timestamp
"{""image"": ""flagged/prompts/fdd45d065153a29e7e3d/1.2.png"", ""points"": []}",,,,2025-01-24 11:09:07.710989
1 prompts Response flag username timestamp
2 {"image": "flagged/prompts/fdd45d065153a29e7e3d/1.2.png", "points": []} 2025-01-24 11:09:07.710989

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View File

@ -9,8 +9,9 @@ pipe = pipeline(
model,
backend_config=TurbomindEngineConfig(
model_format="awq",
tp=2,
device_ids=[0, 1],
# tp=2,
tp=4,
# device_ids=[0, 1],
session_len=12864,
max_batch_size=1,
cache_max_entry_count=0.05,

54
ui.py
View File

@ -1,9 +1,17 @@
import gradio as gr
import os
import asyncio
import gradio as gr
from gradio_image_prompter import ImagePrompter
from endpoints.text import text_query
from endpoints.image import image_query
from endpoints.video import video_query
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
import torch
print("Available GPUs:", torch.cuda.device_count())
print("Visible Devices:", [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
def setup_ui():
with gr.Blocks() as ui:
gr.Markdown(
@ -32,13 +40,39 @@ def setup_ui():
with gr.Tab("Image Query"):
gr.Markdown("### Submit an Image Query")
with gr.Row():
image_input = gr.File(label="Upload Image")
image_prompter = ImagePrompter(show_label=False)
image_question_input = gr.Textbox(label="Your Question", placeholder="Type your question here...")
image_button = gr.Button("Submit")
image_output = gr.Textbox(label="Response", interactive=False)
# async def handle_image_query(prompts, question):
# response = await image_query(prompts["image"], question)
# return response["response"] if "response" in response else response["error"]
async def handle_image_query(prompts, question):
"""
Handles the image query and ensures that inputs are valid.
"""
try:
# Validate prompts
if prompts is None or "image" not in prompts:
return "No image provided. Please upload an image."
image_data = prompts["image"]
# Check if image_data is valid
if image_data is None:
return "Invalid image input. Please upload a valid image."
# Call the `image_query` function
response = await image_query(image_data, question)
return response["response"] if "response" in response else response["error"]
except Exception as e:
return str(e)
image_button.click(
fn=lambda img, q: asyncio.run(image_query(img, q)),
inputs=[image_input, image_question_input],
fn=handle_image_query,
inputs=[image_prompter, image_question_input],
outputs=[image_output]
)
@ -46,18 +80,24 @@ def setup_ui():
with gr.Tab("Video Query"):
gr.Markdown("### Submit a Video Query")
with gr.Row():
video_input = gr.File(label="Upload Video")
video_input = gr.Video(label="Upload Video")
video_question_input = gr.Textbox(label="Your Question", placeholder="Type your question here...")
video_button = gr.Button("Submit")
video_output = gr.Textbox(label="Response", interactive=False)
async def handle_video_query(video, question):
response = await video_query(video, question)
return response.get("responses", response.get("error", "Error processing video."))
video_button.click(
fn=lambda vid, q: asyncio.run(video_query(vid, q)),
fn=handle_video_query,
inputs=[video_input, video_question_input],
outputs=[video_output]
)
return ui
if __name__ == "__main__":
ui = setup_ui()
ui.launch(server_name="0.0.0.0", server_port=7860)
ui.launch(server_name="0.0.0.0", server_port=8002)