updated gradio

This commit is contained in:
Zixiao Wang 2025-02-08 18:52:07 +08:00
parent 814e558959
commit 2c51c14bc6
4 changed files with 174 additions and 172 deletions

5
.gitignore vendored
View File

@ -11,5 +11,6 @@
*.app
.snapshots/*
__pycache__/*
endpoints/__pycache__/*
__pycache__/
endpoints/__pycache__/
flagged/

View File

@ -1,5 +1,6 @@
from fastapi import UploadFile, Form
from fastapi.responses import JSONResponse
import base64
import io
import asyncio
import numpy as np
@ -7,43 +8,43 @@ from PIL import Image
from pipeline_setup import pipe, IMAGE_TOKEN
from utils.image_processing import encode_image_base64
async def image_query(file: UploadFile, question: str = Form(...)):
"""
API endpoint to process an image with the user's query.
"""
try:
if file.content_type not in ["image/jpeg", "image/png"]:
return JSONResponse({"query": question, "error": "Unsupported file type."})
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
encoded_image_base64 = encode_image_base64(image)
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
response = await asyncio.to_thread(pipe, (question, image))
return JSONResponse({"query": question, "response": response.text})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def image_query(image: np.ndarray, question: str):
# async def image_query(file: UploadFile, question: str = Form(...)):
# """
# API endpoint to process an image (as numpy array) with the user's query.
# API endpoint to process an image with the user's query.
# """
# try:
# # Convert the numpy array to a PIL Image
# image = Image.fromarray(image).convert("RGB").resize((512, 512))
# if file.content_type not in ["image/jpeg", "image/png"]:
# return JSONResponse({"query": question, "error": "Unsupported file type."})
# # Encode the image to base64 (optional, if needed by your pipeline)
# buffered = io.BytesIO()
# image.save(buffered, format="JPEG")
# encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# image_data = await file.read()
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
# encoded_image_base64 = encode_image_base64(image)
# # Prepare the query with the image token
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# # Query the model
# response = await asyncio.to_thread(pipe, (question, image))
# return {"query": question, "response": response.text}
# return JSONResponse({"query": question, "response": response.text})
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
async def image_query(image: np.ndarray, question: str):
"""
API endpoint to process an image (as numpy array) with the user's query.
"""
try:
# Convert the numpy array to a PIL Image
image = Image.fromarray(image).convert("RGB").resize((512, 512))
# Encode the image to base64 (optional, if needed by your pipeline)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Prepare the query with the image token
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
# Query the model
response = await asyncio.to_thread(pipe, (question, image))
return {"query": question, "response": response.text}
except Exception as e:
return {"query": question, "error": str(e)}

View File

@ -4,23 +4,23 @@ from fastapi.responses import JSONResponse
from asyncio import to_thread
from pipeline_setup import pipe
async def text_query(question: str = Form(...)):
"""
API endpoint to process text input with the user's query.
"""
try:
response = await to_thread(pipe, question)
return JSONResponse({"query": question, "response": response.text})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def text_query(question: str = Form(...)):
# """
# API endpoint to process text input with the user's query.
# """
# try:
# response = await to_thread(pipe, question)
# return {"query": question, "response": response.text}
# return JSONResponse({"query": question, "response": response.text})
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
async def text_query(question: str = Form(...)):
"""
API endpoint to process text input with the user's query.
"""
try:
response = await to_thread(pipe, question)
return {"query": question, "response": response.text}
except Exception as e:
return {"query": question, "error": str(e)}

View File

@ -9,136 +9,34 @@ import asyncio
import mimetypes
from concurrent.futures import ThreadPoolExecutor
async def video_query(file: UploadFile, question: str = Form(...)):
"""
API endpoint to process a video file with the user's query.
"""
try:
print("Processing video...")
# Validate file type
if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
return JSONResponse({"query": question, "error": "Unsupported video file type."})
# Start overall timer
overall_start_time = time.time()
# Save the uploaded video to a temporary file
print("Reading video...")
video_data = await file.read()
temp_video_path = "/tmp/temp_video.mp4"
with open(temp_video_path, "wb") as temp_video_file:
temp_video_file.write(video_data)
print(f"Temp video saved to: {temp_video_path}")
# Record the time after reading the video
video_reading_time = time.time()
# Split the video into segments
print("Splitting video...")
segments = split_video_into_segments(temp_video_path, segment_duration=30)
print(f"Video split into {len(segments)} segments.")
aggregated_responses = []
segment_timings = []
for i, segment_path in enumerate(segments):
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# Start timing for the segment
segment_start_time = time.time()
# Extract key frames
frame_start_time = time.time()
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
frame_time = time.time()
# Extract audio and transcribe
audio_start_time = time.time()
audio_path = extract_audio_from_video(segment_path)
transcribed_text = transcribe_audio(audio_path)
audio_time = time.time()
# Combine transcribed text with the query
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# Prepare content for the pipeline
question_with_frames = ""
for j, img in enumerate(imgs):
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
question_with_frames += combined_query
content = [{"type": "text", "text": question_with_frames}]
for img in imgs:
content.append({
"type": "image_url",
"image_url": {
"max_dynamic_patch": 1,
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
}
})
# Query the model
inference_start_time = time.time()
messages = [dict(role="user", content=content)]
response = await asyncio.to_thread(pipe, messages)
inference_time = time.time()
# Aggregate response
aggregated_responses.append(response.text)
# Calculate timing for the segment
segment_timings.append({
"segment_index": i + 1,
"segment_processing_time": inference_time - segment_start_time,
"frame_extraction_time": frame_time - frame_start_time,
"audio_extraction_time": audio_time - audio_start_time,
"model_inference_time": inference_time - inference_start_time
})
print(f"transcription: {transcribed_text}")
# print(f"content: {content}")
overall_end_time = time.time()
# Aggregate total timings
total_timings = {
"video_reading_time": video_reading_time - overall_start_time,
"total_segments": len(segments),
"total_processing_time": overall_end_time - overall_start_time,
"segment_details": segment_timings
}
return JSONResponse({
"question": question,
"responses": aggregated_responses,
"timings": total_timings,
})
except Exception as e:
return JSONResponse({"query": question, "error": str(e)})
# async def video_query(video_path: str, question: str):
# async def video_query(file: UploadFile, question: str = Form(...)):
# """
# API endpoint to process a video file with the user's query.
# """
# try:
# print("Processing video...")
# if not video_path or not isinstance(video_path, str):
# return {"query": question, "error": "No video file provided or invalid file input."}
# # Validate file type
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
# # Determine the file type using the file extension
# file_type, _ = mimetypes.guess_type(video_path)
# if file_type is None or not file_type.startswith("video/"):
# return {"query": question, "error": "Unsupported video file type."}
# # Start overall timer
# overall_start_time = time.time()
# # Log the video path
# print(f"Video path: {video_path}")
# # Save the uploaded video to a temporary file
# print("Reading video...")
# video_data = await file.read()
# temp_video_path = "/tmp/temp_video.mp4"
# with open(temp_video_path, "wb") as temp_video_file:
# temp_video_file.write(video_data)
# print(f"Temp video saved to: {temp_video_path}")
# # Record the time after reading the video
# video_reading_time = time.time()
# # Split the video into segments
# print("Splitting video...")
# segments = split_video_into_segments(video_path, segment_duration=30)
# segments = split_video_into_segments(temp_video_path, segment_duration=30)
# print(f"Video split into {len(segments)} segments.")
# aggregated_responses = []
@ -147,12 +45,19 @@ async def video_query(file: UploadFile, question: str = Form(...)):
# for i, segment_path in enumerate(segments):
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# # Start timing for the segment
# segment_start_time = time.time()
# # Extract key frames
# frame_start_time = time.time()
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# frame_time = time.time()
# # Extract audio and transcribe
# audio_start_time = time.time()
# audio_path = extract_audio_from_video(segment_path)
# transcribed_text = transcribe_audio(audio_path)
# audio_time = time.time()
# # Combine transcribed text with the query
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
@ -174,15 +79,110 @@ async def video_query(file: UploadFile, question: str = Form(...)):
# })
# # Query the model
# inference_start_time = time.time()
# messages = [dict(role="user", content=content)]
# response = await asyncio.to_thread(pipe, messages)
# inference_time = time.time()
# # Aggregate response
# aggregated_responses.append(response.text)
# return {
# # Calculate timing for the segment
# segment_timings.append({
# "segment_index": i + 1,
# "segment_processing_time": inference_time - segment_start_time,
# "frame_extraction_time": frame_time - frame_start_time,
# "audio_extraction_time": audio_time - audio_start_time,
# "model_inference_time": inference_time - inference_start_time
# })
# print(f"transcription: {transcribed_text}")
# # print(f"content: {content}")
# overall_end_time = time.time()
# # Aggregate total timings
# total_timings = {
# "video_reading_time": video_reading_time - overall_start_time,
# "total_segments": len(segments),
# "total_processing_time": overall_end_time - overall_start_time,
# "segment_details": segment_timings
# }
# return JSONResponse({
# "question": question,
# "responses": aggregated_responses,
# }
# "timings": total_timings,
# })
# except Exception as e:
# return {"query": question, "error": str(e)}
# return JSONResponse({"query": question, "error": str(e)})
async def video_query(video_path: str, question: str):
"""
API endpoint to process a video file with the user's query.
"""
try:
print("Processing video...")
if not video_path or not isinstance(video_path, str):
return {"query": question, "error": "No video file provided or invalid file input."}
# Determine the file type using the file extension
file_type, _ = mimetypes.guess_type(video_path)
if file_type is None or not file_type.startswith("video/"):
return {"query": question, "error": "Unsupported video file type."}
# Log the video path
print(f"Video path: {video_path}")
# Split the video into segments
print("Splitting video...")
segments = split_video_into_segments(video_path, segment_duration=30)
print(f"Video split into {len(segments)} segments.")
aggregated_responses = []
segment_timings = []
for i, segment_path in enumerate(segments):
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
# Extract key frames
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
# Extract audio and transcribe
audio_path = extract_audio_from_video(segment_path)
transcribed_text = transcribe_audio(audio_path)
# Combine transcribed text with the query
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
# Prepare content for the pipeline
question_with_frames = ""
for j, img in enumerate(imgs):
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
question_with_frames += combined_query
content = [{"type": "text", "text": question_with_frames}]
for img in imgs:
content.append({
"type": "image_url",
"image_url": {
"max_dynamic_patch": 1,
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
}
})
# Query the model
messages = [dict(role="user", content=content)]
response = await asyncio.to_thread(pipe, messages)
# Aggregate response
aggregated_responses.append(response.text)
return {
"question": question,
"responses": aggregated_responses,
}
except Exception as e:
return {"query": question, "error": str(e)}