updated gradio
This commit is contained in:
parent
814e558959
commit
2c51c14bc6
5
.gitignore
vendored
5
.gitignore
vendored
@ -11,5 +11,6 @@
|
|||||||
*.app
|
*.app
|
||||||
.snapshots/*
|
.snapshots/*
|
||||||
|
|
||||||
__pycache__/*
|
__pycache__/
|
||||||
endpoints/__pycache__/*
|
endpoints/__pycache__/
|
||||||
|
flagged/
|
@ -1,5 +1,6 @@
|
|||||||
from fastapi import UploadFile, Form
|
from fastapi import UploadFile, Form
|
||||||
from fastapi.responses import JSONResponse
|
from fastapi.responses import JSONResponse
|
||||||
|
import base64
|
||||||
import io
|
import io
|
||||||
import asyncio
|
import asyncio
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -7,43 +8,43 @@ from PIL import Image
|
|||||||
from pipeline_setup import pipe, IMAGE_TOKEN
|
from pipeline_setup import pipe, IMAGE_TOKEN
|
||||||
from utils.image_processing import encode_image_base64
|
from utils.image_processing import encode_image_base64
|
||||||
|
|
||||||
async def image_query(file: UploadFile, question: str = Form(...)):
|
# async def image_query(file: UploadFile, question: str = Form(...)):
|
||||||
"""
|
|
||||||
API endpoint to process an image with the user's query.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
if file.content_type not in ["image/jpeg", "image/png"]:
|
|
||||||
return JSONResponse({"query": question, "error": "Unsupported file type."})
|
|
||||||
|
|
||||||
image_data = await file.read()
|
|
||||||
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
|
||||||
encoded_image_base64 = encode_image_base64(image)
|
|
||||||
|
|
||||||
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
|
||||||
response = await asyncio.to_thread(pipe, (question, image))
|
|
||||||
return JSONResponse({"query": question, "response": response.text})
|
|
||||||
except Exception as e:
|
|
||||||
return JSONResponse({"query": question, "error": str(e)})
|
|
||||||
|
|
||||||
|
|
||||||
# async def image_query(image: np.ndarray, question: str):
|
|
||||||
# """
|
# """
|
||||||
# API endpoint to process an image (as numpy array) with the user's query.
|
# API endpoint to process an image with the user's query.
|
||||||
# """
|
# """
|
||||||
# try:
|
# try:
|
||||||
# # Convert the numpy array to a PIL Image
|
# if file.content_type not in ["image/jpeg", "image/png"]:
|
||||||
# image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
# return JSONResponse({"query": question, "error": "Unsupported file type."})
|
||||||
|
|
||||||
|
# image_data = await file.read()
|
||||||
|
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
||||||
|
# encoded_image_base64 = encode_image_base64(image)
|
||||||
|
|
||||||
# # Encode the image to base64 (optional, if needed by your pipeline)
|
|
||||||
# buffered = io.BytesIO()
|
|
||||||
# image.save(buffered, format="JPEG")
|
|
||||||
# encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
||||||
|
|
||||||
# # Prepare the query with the image token
|
|
||||||
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||||
|
# response = await asyncio.to_thread(pipe, (question, image))
|
||||||
# # Query the model
|
# return JSONResponse({"query": question, "response": response.text})
|
||||||
# response = await asyncio.to_thread(pipe, (question, image))
|
|
||||||
# return {"query": question, "response": response.text}
|
|
||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# return {"query": question, "error": str(e)}
|
# return JSONResponse({"query": question, "error": str(e)})
|
||||||
|
|
||||||
|
|
||||||
|
async def image_query(image: np.ndarray, question: str):
|
||||||
|
"""
|
||||||
|
API endpoint to process an image (as numpy array) with the user's query.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Convert the numpy array to a PIL Image
|
||||||
|
image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
||||||
|
|
||||||
|
# Encode the image to base64 (optional, if needed by your pipeline)
|
||||||
|
buffered = io.BytesIO()
|
||||||
|
image.save(buffered, format="JPEG")
|
||||||
|
encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||||
|
|
||||||
|
# Prepare the query with the image token
|
||||||
|
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||||
|
|
||||||
|
# Query the model
|
||||||
|
response = await asyncio.to_thread(pipe, (question, image))
|
||||||
|
return {"query": question, "response": response.text}
|
||||||
|
except Exception as e:
|
||||||
|
return {"query": question, "error": str(e)}
|
||||||
|
@ -4,23 +4,23 @@ from fastapi.responses import JSONResponse
|
|||||||
from asyncio import to_thread
|
from asyncio import to_thread
|
||||||
from pipeline_setup import pipe
|
from pipeline_setup import pipe
|
||||||
|
|
||||||
async def text_query(question: str = Form(...)):
|
|
||||||
"""
|
|
||||||
API endpoint to process text input with the user's query.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
response = await to_thread(pipe, question)
|
|
||||||
return JSONResponse({"query": question, "response": response.text})
|
|
||||||
except Exception as e:
|
|
||||||
return JSONResponse({"query": question, "error": str(e)})
|
|
||||||
|
|
||||||
|
|
||||||
# async def text_query(question: str = Form(...)):
|
# async def text_query(question: str = Form(...)):
|
||||||
# """
|
# """
|
||||||
# API endpoint to process text input with the user's query.
|
# API endpoint to process text input with the user's query.
|
||||||
# """
|
# """
|
||||||
# try:
|
# try:
|
||||||
# response = await to_thread(pipe, question)
|
# response = await to_thread(pipe, question)
|
||||||
# return {"query": question, "response": response.text}
|
# return JSONResponse({"query": question, "response": response.text})
|
||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# return {"query": question, "error": str(e)}
|
# return JSONResponse({"query": question, "error": str(e)})
|
||||||
|
|
||||||
|
|
||||||
|
async def text_query(question: str = Form(...)):
|
||||||
|
"""
|
||||||
|
API endpoint to process text input with the user's query.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
response = await to_thread(pipe, question)
|
||||||
|
return {"query": question, "response": response.text}
|
||||||
|
except Exception as e:
|
||||||
|
return {"query": question, "error": str(e)}
|
||||||
|
@ -9,136 +9,34 @@ import asyncio
|
|||||||
import mimetypes
|
import mimetypes
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
async def video_query(file: UploadFile, question: str = Form(...)):
|
# async def video_query(file: UploadFile, question: str = Form(...)):
|
||||||
"""
|
|
||||||
API endpoint to process a video file with the user's query.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
print("Processing video...")
|
|
||||||
|
|
||||||
# Validate file type
|
|
||||||
if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
|
||||||
return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
|
||||||
|
|
||||||
# Start overall timer
|
|
||||||
overall_start_time = time.time()
|
|
||||||
|
|
||||||
# Save the uploaded video to a temporary file
|
|
||||||
print("Reading video...")
|
|
||||||
video_data = await file.read()
|
|
||||||
temp_video_path = "/tmp/temp_video.mp4"
|
|
||||||
with open(temp_video_path, "wb") as temp_video_file:
|
|
||||||
temp_video_file.write(video_data)
|
|
||||||
print(f"Temp video saved to: {temp_video_path}")
|
|
||||||
|
|
||||||
# Record the time after reading the video
|
|
||||||
video_reading_time = time.time()
|
|
||||||
|
|
||||||
# Split the video into segments
|
|
||||||
print("Splitting video...")
|
|
||||||
segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
|
||||||
print(f"Video split into {len(segments)} segments.")
|
|
||||||
|
|
||||||
aggregated_responses = []
|
|
||||||
segment_timings = []
|
|
||||||
|
|
||||||
for i, segment_path in enumerate(segments):
|
|
||||||
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
|
||||||
|
|
||||||
# Start timing for the segment
|
|
||||||
segment_start_time = time.time()
|
|
||||||
|
|
||||||
# Extract key frames
|
|
||||||
frame_start_time = time.time()
|
|
||||||
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
|
||||||
frame_time = time.time()
|
|
||||||
|
|
||||||
# Extract audio and transcribe
|
|
||||||
audio_start_time = time.time()
|
|
||||||
audio_path = extract_audio_from_video(segment_path)
|
|
||||||
transcribed_text = transcribe_audio(audio_path)
|
|
||||||
audio_time = time.time()
|
|
||||||
|
|
||||||
# Combine transcribed text with the query
|
|
||||||
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
|
||||||
|
|
||||||
# Prepare content for the pipeline
|
|
||||||
question_with_frames = ""
|
|
||||||
for j, img in enumerate(imgs):
|
|
||||||
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
|
||||||
question_with_frames += combined_query
|
|
||||||
|
|
||||||
content = [{"type": "text", "text": question_with_frames}]
|
|
||||||
for img in imgs:
|
|
||||||
content.append({
|
|
||||||
"type": "image_url",
|
|
||||||
"image_url": {
|
|
||||||
"max_dynamic_patch": 1,
|
|
||||||
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
|
||||||
}
|
|
||||||
})
|
|
||||||
|
|
||||||
# Query the model
|
|
||||||
inference_start_time = time.time()
|
|
||||||
messages = [dict(role="user", content=content)]
|
|
||||||
response = await asyncio.to_thread(pipe, messages)
|
|
||||||
inference_time = time.time()
|
|
||||||
|
|
||||||
# Aggregate response
|
|
||||||
aggregated_responses.append(response.text)
|
|
||||||
|
|
||||||
# Calculate timing for the segment
|
|
||||||
segment_timings.append({
|
|
||||||
"segment_index": i + 1,
|
|
||||||
"segment_processing_time": inference_time - segment_start_time,
|
|
||||||
"frame_extraction_time": frame_time - frame_start_time,
|
|
||||||
"audio_extraction_time": audio_time - audio_start_time,
|
|
||||||
"model_inference_time": inference_time - inference_start_time
|
|
||||||
})
|
|
||||||
|
|
||||||
print(f"transcription: {transcribed_text}")
|
|
||||||
# print(f"content: {content}")
|
|
||||||
|
|
||||||
overall_end_time = time.time()
|
|
||||||
|
|
||||||
# Aggregate total timings
|
|
||||||
total_timings = {
|
|
||||||
"video_reading_time": video_reading_time - overall_start_time,
|
|
||||||
"total_segments": len(segments),
|
|
||||||
"total_processing_time": overall_end_time - overall_start_time,
|
|
||||||
"segment_details": segment_timings
|
|
||||||
}
|
|
||||||
|
|
||||||
return JSONResponse({
|
|
||||||
"question": question,
|
|
||||||
"responses": aggregated_responses,
|
|
||||||
"timings": total_timings,
|
|
||||||
})
|
|
||||||
except Exception as e:
|
|
||||||
return JSONResponse({"query": question, "error": str(e)})
|
|
||||||
|
|
||||||
|
|
||||||
# async def video_query(video_path: str, question: str):
|
|
||||||
# """
|
# """
|
||||||
# API endpoint to process a video file with the user's query.
|
# API endpoint to process a video file with the user's query.
|
||||||
# """
|
# """
|
||||||
# try:
|
# try:
|
||||||
# print("Processing video...")
|
# print("Processing video...")
|
||||||
|
|
||||||
# if not video_path or not isinstance(video_path, str):
|
# # Validate file type
|
||||||
# return {"query": question, "error": "No video file provided or invalid file input."}
|
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
||||||
|
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
||||||
|
|
||||||
# # Determine the file type using the file extension
|
# # Start overall timer
|
||||||
# file_type, _ = mimetypes.guess_type(video_path)
|
# overall_start_time = time.time()
|
||||||
# if file_type is None or not file_type.startswith("video/"):
|
|
||||||
# return {"query": question, "error": "Unsupported video file type."}
|
|
||||||
|
|
||||||
# # Log the video path
|
# # Save the uploaded video to a temporary file
|
||||||
# print(f"Video path: {video_path}")
|
# print("Reading video...")
|
||||||
|
# video_data = await file.read()
|
||||||
|
# temp_video_path = "/tmp/temp_video.mp4"
|
||||||
|
# with open(temp_video_path, "wb") as temp_video_file:
|
||||||
|
# temp_video_file.write(video_data)
|
||||||
|
# print(f"Temp video saved to: {temp_video_path}")
|
||||||
|
|
||||||
|
# # Record the time after reading the video
|
||||||
|
# video_reading_time = time.time()
|
||||||
|
|
||||||
# # Split the video into segments
|
# # Split the video into segments
|
||||||
# print("Splitting video...")
|
# print("Splitting video...")
|
||||||
# segments = split_video_into_segments(video_path, segment_duration=30)
|
# segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
||||||
# print(f"Video split into {len(segments)} segments.")
|
# print(f"Video split into {len(segments)} segments.")
|
||||||
|
|
||||||
# aggregated_responses = []
|
# aggregated_responses = []
|
||||||
@ -147,12 +45,19 @@ async def video_query(file: UploadFile, question: str = Form(...)):
|
|||||||
# for i, segment_path in enumerate(segments):
|
# for i, segment_path in enumerate(segments):
|
||||||
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||||
|
|
||||||
|
# # Start timing for the segment
|
||||||
|
# segment_start_time = time.time()
|
||||||
|
|
||||||
# # Extract key frames
|
# # Extract key frames
|
||||||
|
# frame_start_time = time.time()
|
||||||
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||||
|
# frame_time = time.time()
|
||||||
|
|
||||||
# # Extract audio and transcribe
|
# # Extract audio and transcribe
|
||||||
|
# audio_start_time = time.time()
|
||||||
# audio_path = extract_audio_from_video(segment_path)
|
# audio_path = extract_audio_from_video(segment_path)
|
||||||
# transcribed_text = transcribe_audio(audio_path)
|
# transcribed_text = transcribe_audio(audio_path)
|
||||||
|
# audio_time = time.time()
|
||||||
|
|
||||||
# # Combine transcribed text with the query
|
# # Combine transcribed text with the query
|
||||||
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||||
@ -174,15 +79,110 @@ async def video_query(file: UploadFile, question: str = Form(...)):
|
|||||||
# })
|
# })
|
||||||
|
|
||||||
# # Query the model
|
# # Query the model
|
||||||
|
# inference_start_time = time.time()
|
||||||
# messages = [dict(role="user", content=content)]
|
# messages = [dict(role="user", content=content)]
|
||||||
# response = await asyncio.to_thread(pipe, messages)
|
# response = await asyncio.to_thread(pipe, messages)
|
||||||
|
# inference_time = time.time()
|
||||||
|
|
||||||
# # Aggregate response
|
# # Aggregate response
|
||||||
# aggregated_responses.append(response.text)
|
# aggregated_responses.append(response.text)
|
||||||
|
|
||||||
# return {
|
# # Calculate timing for the segment
|
||||||
|
# segment_timings.append({
|
||||||
|
# "segment_index": i + 1,
|
||||||
|
# "segment_processing_time": inference_time - segment_start_time,
|
||||||
|
# "frame_extraction_time": frame_time - frame_start_time,
|
||||||
|
# "audio_extraction_time": audio_time - audio_start_time,
|
||||||
|
# "model_inference_time": inference_time - inference_start_time
|
||||||
|
# })
|
||||||
|
|
||||||
|
# print(f"transcription: {transcribed_text}")
|
||||||
|
# # print(f"content: {content}")
|
||||||
|
|
||||||
|
# overall_end_time = time.time()
|
||||||
|
|
||||||
|
# # Aggregate total timings
|
||||||
|
# total_timings = {
|
||||||
|
# "video_reading_time": video_reading_time - overall_start_time,
|
||||||
|
# "total_segments": len(segments),
|
||||||
|
# "total_processing_time": overall_end_time - overall_start_time,
|
||||||
|
# "segment_details": segment_timings
|
||||||
|
# }
|
||||||
|
|
||||||
|
# return JSONResponse({
|
||||||
# "question": question,
|
# "question": question,
|
||||||
# "responses": aggregated_responses,
|
# "responses": aggregated_responses,
|
||||||
# }
|
# "timings": total_timings,
|
||||||
|
# })
|
||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# return {"query": question, "error": str(e)}
|
# return JSONResponse({"query": question, "error": str(e)})
|
||||||
|
|
||||||
|
|
||||||
|
async def video_query(video_path: str, question: str):
|
||||||
|
"""
|
||||||
|
API endpoint to process a video file with the user's query.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
print("Processing video...")
|
||||||
|
|
||||||
|
if not video_path or not isinstance(video_path, str):
|
||||||
|
return {"query": question, "error": "No video file provided or invalid file input."}
|
||||||
|
|
||||||
|
# Determine the file type using the file extension
|
||||||
|
file_type, _ = mimetypes.guess_type(video_path)
|
||||||
|
if file_type is None or not file_type.startswith("video/"):
|
||||||
|
return {"query": question, "error": "Unsupported video file type."}
|
||||||
|
|
||||||
|
# Log the video path
|
||||||
|
print(f"Video path: {video_path}")
|
||||||
|
|
||||||
|
# Split the video into segments
|
||||||
|
print("Splitting video...")
|
||||||
|
segments = split_video_into_segments(video_path, segment_duration=30)
|
||||||
|
print(f"Video split into {len(segments)} segments.")
|
||||||
|
|
||||||
|
aggregated_responses = []
|
||||||
|
segment_timings = []
|
||||||
|
|
||||||
|
for i, segment_path in enumerate(segments):
|
||||||
|
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||||
|
|
||||||
|
# Extract key frames
|
||||||
|
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||||
|
|
||||||
|
# Extract audio and transcribe
|
||||||
|
audio_path = extract_audio_from_video(segment_path)
|
||||||
|
transcribed_text = transcribe_audio(audio_path)
|
||||||
|
|
||||||
|
# Combine transcribed text with the query
|
||||||
|
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||||
|
|
||||||
|
# Prepare content for the pipeline
|
||||||
|
question_with_frames = ""
|
||||||
|
for j, img in enumerate(imgs):
|
||||||
|
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
||||||
|
question_with_frames += combined_query
|
||||||
|
|
||||||
|
content = [{"type": "text", "text": question_with_frames}]
|
||||||
|
for img in imgs:
|
||||||
|
content.append({
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"max_dynamic_patch": 1,
|
||||||
|
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
# Query the model
|
||||||
|
messages = [dict(role="user", content=content)]
|
||||||
|
response = await asyncio.to_thread(pipe, messages)
|
||||||
|
|
||||||
|
# Aggregate response
|
||||||
|
aggregated_responses.append(response.text)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"question": question,
|
||||||
|
"responses": aggregated_responses,
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
return {"query": question, "error": str(e)}
|
Loading…
Reference in New Issue
Block a user