updated gradio
This commit is contained in:
parent
814e558959
commit
2c51c14bc6
5
.gitignore
vendored
5
.gitignore
vendored
@ -11,5 +11,6 @@
|
||||
*.app
|
||||
.snapshots/*
|
||||
|
||||
__pycache__/*
|
||||
endpoints/__pycache__/*
|
||||
__pycache__/
|
||||
endpoints/__pycache__/
|
||||
flagged/
|
@ -1,5 +1,6 @@
|
||||
from fastapi import UploadFile, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
import base64
|
||||
import io
|
||||
import asyncio
|
||||
import numpy as np
|
||||
@ -7,43 +8,43 @@ from PIL import Image
|
||||
from pipeline_setup import pipe, IMAGE_TOKEN
|
||||
from utils.image_processing import encode_image_base64
|
||||
|
||||
async def image_query(file: UploadFile, question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process an image with the user's query.
|
||||
"""
|
||||
try:
|
||||
if file.content_type not in ["image/jpeg", "image/png"]:
|
||||
return JSONResponse({"query": question, "error": "Unsupported file type."})
|
||||
|
||||
image_data = await file.read()
|
||||
image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
||||
encoded_image_base64 = encode_image_base64(image)
|
||||
|
||||
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
response = await asyncio.to_thread(pipe, (question, image))
|
||||
return JSONResponse({"query": question, "response": response.text})
|
||||
except Exception as e:
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
# async def image_query(image: np.ndarray, question: str):
|
||||
# async def image_query(file: UploadFile, question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process an image (as numpy array) with the user's query.
|
||||
# API endpoint to process an image with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# # Convert the numpy array to a PIL Image
|
||||
# image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
||||
# if file.content_type not in ["image/jpeg", "image/png"]:
|
||||
# return JSONResponse({"query": question, "error": "Unsupported file type."})
|
||||
|
||||
# image_data = await file.read()
|
||||
# image = Image.open(io.BytesIO(image_data)).convert("RGB").resize((512, 512))
|
||||
# encoded_image_base64 = encode_image_base64(image)
|
||||
|
||||
# # Encode the image to base64 (optional, if needed by your pipeline)
|
||||
# buffered = io.BytesIO()
|
||||
# image.save(buffered, format="JPEG")
|
||||
# encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
# # Prepare the query with the image token
|
||||
# question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
|
||||
# # Query the model
|
||||
# response = await asyncio.to_thread(pipe, (question, image))
|
||||
# return {"query": question, "response": response.text}
|
||||
# response = await asyncio.to_thread(pipe, (question, image))
|
||||
# return JSONResponse({"query": question, "response": response.text})
|
||||
# except Exception as e:
|
||||
# return {"query": question, "error": str(e)}
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
async def image_query(image: np.ndarray, question: str):
|
||||
"""
|
||||
API endpoint to process an image (as numpy array) with the user's query.
|
||||
"""
|
||||
try:
|
||||
# Convert the numpy array to a PIL Image
|
||||
image = Image.fromarray(image).convert("RGB").resize((512, 512))
|
||||
|
||||
# Encode the image to base64 (optional, if needed by your pipeline)
|
||||
buffered = io.BytesIO()
|
||||
image.save(buffered, format="JPEG")
|
||||
encoded_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
||||
|
||||
# Prepare the query with the image token
|
||||
question_with_image_token = f"{question}\n{IMAGE_TOKEN}"
|
||||
|
||||
# Query the model
|
||||
response = await asyncio.to_thread(pipe, (question, image))
|
||||
return {"query": question, "response": response.text}
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
||||
|
@ -4,23 +4,23 @@ from fastapi.responses import JSONResponse
|
||||
from asyncio import to_thread
|
||||
from pipeline_setup import pipe
|
||||
|
||||
async def text_query(question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process text input with the user's query.
|
||||
"""
|
||||
try:
|
||||
response = await to_thread(pipe, question)
|
||||
return JSONResponse({"query": question, "response": response.text})
|
||||
except Exception as e:
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
# async def text_query(question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process text input with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# response = await to_thread(pipe, question)
|
||||
# return {"query": question, "response": response.text}
|
||||
# response = await to_thread(pipe, question)
|
||||
# return JSONResponse({"query": question, "response": response.text})
|
||||
# except Exception as e:
|
||||
# return {"query": question, "error": str(e)}
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
async def text_query(question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process text input with the user's query.
|
||||
"""
|
||||
try:
|
||||
response = await to_thread(pipe, question)
|
||||
return {"query": question, "response": response.text}
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
||||
|
@ -9,136 +9,34 @@ import asyncio
|
||||
import mimetypes
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
"""
|
||||
API endpoint to process a video file with the user's query.
|
||||
"""
|
||||
try:
|
||||
print("Processing video...")
|
||||
|
||||
# Validate file type
|
||||
if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
||||
return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
||||
|
||||
# Start overall timer
|
||||
overall_start_time = time.time()
|
||||
|
||||
# Save the uploaded video to a temporary file
|
||||
print("Reading video...")
|
||||
video_data = await file.read()
|
||||
temp_video_path = "/tmp/temp_video.mp4"
|
||||
with open(temp_video_path, "wb") as temp_video_file:
|
||||
temp_video_file.write(video_data)
|
||||
print(f"Temp video saved to: {temp_video_path}")
|
||||
|
||||
# Record the time after reading the video
|
||||
video_reading_time = time.time()
|
||||
|
||||
# Split the video into segments
|
||||
print("Splitting video...")
|
||||
segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
||||
print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
aggregated_responses = []
|
||||
segment_timings = []
|
||||
|
||||
for i, segment_path in enumerate(segments):
|
||||
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# Start timing for the segment
|
||||
segment_start_time = time.time()
|
||||
|
||||
# Extract key frames
|
||||
frame_start_time = time.time()
|
||||
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
frame_time = time.time()
|
||||
|
||||
# Extract audio and transcribe
|
||||
audio_start_time = time.time()
|
||||
audio_path = extract_audio_from_video(segment_path)
|
||||
transcribed_text = transcribe_audio(audio_path)
|
||||
audio_time = time.time()
|
||||
|
||||
# Combine transcribed text with the query
|
||||
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
|
||||
# Prepare content for the pipeline
|
||||
question_with_frames = ""
|
||||
for j, img in enumerate(imgs):
|
||||
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
||||
question_with_frames += combined_query
|
||||
|
||||
content = [{"type": "text", "text": question_with_frames}]
|
||||
for img in imgs:
|
||||
content.append({
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"max_dynamic_patch": 1,
|
||||
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
||||
}
|
||||
})
|
||||
|
||||
# Query the model
|
||||
inference_start_time = time.time()
|
||||
messages = [dict(role="user", content=content)]
|
||||
response = await asyncio.to_thread(pipe, messages)
|
||||
inference_time = time.time()
|
||||
|
||||
# Aggregate response
|
||||
aggregated_responses.append(response.text)
|
||||
|
||||
# Calculate timing for the segment
|
||||
segment_timings.append({
|
||||
"segment_index": i + 1,
|
||||
"segment_processing_time": inference_time - segment_start_time,
|
||||
"frame_extraction_time": frame_time - frame_start_time,
|
||||
"audio_extraction_time": audio_time - audio_start_time,
|
||||
"model_inference_time": inference_time - inference_start_time
|
||||
})
|
||||
|
||||
print(f"transcription: {transcribed_text}")
|
||||
# print(f"content: {content}")
|
||||
|
||||
overall_end_time = time.time()
|
||||
|
||||
# Aggregate total timings
|
||||
total_timings = {
|
||||
"video_reading_time": video_reading_time - overall_start_time,
|
||||
"total_segments": len(segments),
|
||||
"total_processing_time": overall_end_time - overall_start_time,
|
||||
"segment_details": segment_timings
|
||||
}
|
||||
|
||||
return JSONResponse({
|
||||
"question": question,
|
||||
"responses": aggregated_responses,
|
||||
"timings": total_timings,
|
||||
})
|
||||
except Exception as e:
|
||||
return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
# async def video_query(video_path: str, question: str):
|
||||
# async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
# """
|
||||
# API endpoint to process a video file with the user's query.
|
||||
# """
|
||||
# try:
|
||||
# print("Processing video...")
|
||||
|
||||
# if not video_path or not isinstance(video_path, str):
|
||||
# return {"query": question, "error": "No video file provided or invalid file input."}
|
||||
# # Validate file type
|
||||
# if file.content_type not in ["video/mp4", "video/avi", "video/mkv"]:
|
||||
# return JSONResponse({"query": question, "error": "Unsupported video file type."})
|
||||
|
||||
# # Determine the file type using the file extension
|
||||
# file_type, _ = mimetypes.guess_type(video_path)
|
||||
# if file_type is None or not file_type.startswith("video/"):
|
||||
# return {"query": question, "error": "Unsupported video file type."}
|
||||
# # Start overall timer
|
||||
# overall_start_time = time.time()
|
||||
|
||||
# # Log the video path
|
||||
# print(f"Video path: {video_path}")
|
||||
# # Save the uploaded video to a temporary file
|
||||
# print("Reading video...")
|
||||
# video_data = await file.read()
|
||||
# temp_video_path = "/tmp/temp_video.mp4"
|
||||
# with open(temp_video_path, "wb") as temp_video_file:
|
||||
# temp_video_file.write(video_data)
|
||||
# print(f"Temp video saved to: {temp_video_path}")
|
||||
|
||||
# # Record the time after reading the video
|
||||
# video_reading_time = time.time()
|
||||
|
||||
# # Split the video into segments
|
||||
# print("Splitting video...")
|
||||
# segments = split_video_into_segments(video_path, segment_duration=30)
|
||||
# segments = split_video_into_segments(temp_video_path, segment_duration=30)
|
||||
# print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
# aggregated_responses = []
|
||||
@ -147,12 +45,19 @@ async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
# for i, segment_path in enumerate(segments):
|
||||
# print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# # Start timing for the segment
|
||||
# segment_start_time = time.time()
|
||||
|
||||
# # Extract key frames
|
||||
# frame_start_time = time.time()
|
||||
# imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
# frame_time = time.time()
|
||||
|
||||
# # Extract audio and transcribe
|
||||
# audio_start_time = time.time()
|
||||
# audio_path = extract_audio_from_video(segment_path)
|
||||
# transcribed_text = transcribe_audio(audio_path)
|
||||
# audio_time = time.time()
|
||||
|
||||
# # Combine transcribed text with the query
|
||||
# combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
@ -174,15 +79,110 @@ async def video_query(file: UploadFile, question: str = Form(...)):
|
||||
# })
|
||||
|
||||
# # Query the model
|
||||
# inference_start_time = time.time()
|
||||
# messages = [dict(role="user", content=content)]
|
||||
# response = await asyncio.to_thread(pipe, messages)
|
||||
# inference_time = time.time()
|
||||
|
||||
# # Aggregate response
|
||||
# aggregated_responses.append(response.text)
|
||||
|
||||
# return {
|
||||
# # Calculate timing for the segment
|
||||
# segment_timings.append({
|
||||
# "segment_index": i + 1,
|
||||
# "segment_processing_time": inference_time - segment_start_time,
|
||||
# "frame_extraction_time": frame_time - frame_start_time,
|
||||
# "audio_extraction_time": audio_time - audio_start_time,
|
||||
# "model_inference_time": inference_time - inference_start_time
|
||||
# })
|
||||
|
||||
# print(f"transcription: {transcribed_text}")
|
||||
# # print(f"content: {content}")
|
||||
|
||||
# overall_end_time = time.time()
|
||||
|
||||
# # Aggregate total timings
|
||||
# total_timings = {
|
||||
# "video_reading_time": video_reading_time - overall_start_time,
|
||||
# "total_segments": len(segments),
|
||||
# "total_processing_time": overall_end_time - overall_start_time,
|
||||
# "segment_details": segment_timings
|
||||
# }
|
||||
|
||||
# return JSONResponse({
|
||||
# "question": question,
|
||||
# "responses": aggregated_responses,
|
||||
# }
|
||||
# "timings": total_timings,
|
||||
# })
|
||||
# except Exception as e:
|
||||
# return {"query": question, "error": str(e)}
|
||||
# return JSONResponse({"query": question, "error": str(e)})
|
||||
|
||||
|
||||
async def video_query(video_path: str, question: str):
|
||||
"""
|
||||
API endpoint to process a video file with the user's query.
|
||||
"""
|
||||
try:
|
||||
print("Processing video...")
|
||||
|
||||
if not video_path or not isinstance(video_path, str):
|
||||
return {"query": question, "error": "No video file provided or invalid file input."}
|
||||
|
||||
# Determine the file type using the file extension
|
||||
file_type, _ = mimetypes.guess_type(video_path)
|
||||
if file_type is None or not file_type.startswith("video/"):
|
||||
return {"query": question, "error": "Unsupported video file type."}
|
||||
|
||||
# Log the video path
|
||||
print(f"Video path: {video_path}")
|
||||
|
||||
# Split the video into segments
|
||||
print("Splitting video...")
|
||||
segments = split_video_into_segments(video_path, segment_duration=30)
|
||||
print(f"Video split into {len(segments)} segments.")
|
||||
|
||||
aggregated_responses = []
|
||||
segment_timings = []
|
||||
|
||||
for i, segment_path in enumerate(segments):
|
||||
print(f"Processing segment {i+1}/{len(segments)}: {segment_path}")
|
||||
|
||||
# Extract key frames
|
||||
imgs = extract_motion_key_frames(segment_path, max_frames=50, sigma_multiplier=2)
|
||||
|
||||
# Extract audio and transcribe
|
||||
audio_path = extract_audio_from_video(segment_path)
|
||||
transcribed_text = transcribe_audio(audio_path)
|
||||
|
||||
# Combine transcribed text with the query
|
||||
combined_query = f"Audio Transcript: {transcribed_text}\n{question}"
|
||||
|
||||
# Prepare content for the pipeline
|
||||
question_with_frames = ""
|
||||
for j, img in enumerate(imgs):
|
||||
question_with_frames += f"Frame{j+1}: {{IMAGE_TOKEN}}\n"
|
||||
question_with_frames += combined_query
|
||||
|
||||
content = [{"type": "text", "text": question_with_frames}]
|
||||
for img in imgs:
|
||||
content.append({
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"max_dynamic_patch": 1,
|
||||
"url": f"data:image/jpeg;base64,{encode_image_base64(img)}"
|
||||
}
|
||||
})
|
||||
|
||||
# Query the model
|
||||
messages = [dict(role="user", content=content)]
|
||||
response = await asyncio.to_thread(pipe, messages)
|
||||
|
||||
# Aggregate response
|
||||
aggregated_responses.append(response.text)
|
||||
|
||||
return {
|
||||
"question": question,
|
||||
"responses": aggregated_responses,
|
||||
}
|
||||
except Exception as e:
|
||||
return {"query": question, "error": str(e)}
|
Loading…
Reference in New Issue
Block a user