Fortrain/qw/open_r1/utils/evaluation.py
2025-03-31 15:56:36 +08:00

105 lines
4.1 KiB
Python
Executable File

import subprocess
from typing import TYPE_CHECKING, Dict, Union
from .hub import get_gpu_count_for_vllm, get_param_count_from_repo_id
if TYPE_CHECKING:
from trl import GRPOConfig, SFTConfig, ModelConfig
import os
# We need a special environment setup to launch vLLM from within Slurm training jobs.
# - Reference code: https://github.com/huggingface/brrr/blob/c55ba3505686d690de24c7ace6487a5c1426c0fd/brrr/lighteval/one_job_runner.py#L105
# - Slack thread: https://huggingface.slack.com/archives/C043JTYE1MJ/p1726566494958269
user_home_directory = os.path.expanduser("~")
VLLM_SLURM_PREFIX = [
"env",
"-i",
"bash",
"-c",
f"for f in /etc/profile.d/*.sh; do source $f; done; export HOME={user_home_directory}; sbatch ",
]
def register_lighteval_task(
configs: Dict[str, str], eval_suite: str, task_name: str, task_list: str, num_fewshot: int = 0
):
"""Registers a LightEval task configuration.
- Core tasks can be added from this table: https://github.com/huggingface/lighteval/blob/main/src/lighteval/tasks/tasks_table.jsonl
- Custom tasks that require their own metrics / scripts, should be stored in scripts/evaluation/extended_lighteval_tasks
Args:
configs (Dict[str, str]): The dictionary to store the task configuration.
eval_suite (str, optional): The evaluation suite.
task_name (str): The name of the task.
task_list (str): The comma-separated list of tasks in the format "extended|{task_name}|{num_fewshot}|0" or "lighteval|{task_name}|{num_fewshot}|0".
num_fewshot (int, optional): The number of few-shot examples. Defaults to 0.
is_custom_task (bool, optional): Whether the task is a custom task. Defaults to False.
"""
# Format task list in lighteval format
task_list = ",".join(f"{eval_suite}|{task}|{num_fewshot}|0" for task in task_list.split(","))
configs[task_name] = task_list
LIGHTEVAL_TASKS = {}
register_lighteval_task(LIGHTEVAL_TASKS, "custom", "math_500", "math_500", 0)
register_lighteval_task(LIGHTEVAL_TASKS, "custom", "aime24", "aime24", 0)
register_lighteval_task(LIGHTEVAL_TASKS, "custom", "aime25_part1", "aime25:part1", 0)
register_lighteval_task(LIGHTEVAL_TASKS, "custom", "gpqa", "gpqa:diamond", 0)
def get_lighteval_tasks():
return list(LIGHTEVAL_TASKS.keys())
SUPPORTED_BENCHMARKS = get_lighteval_tasks()
def run_lighteval_job(
benchmark: str, training_args: Union["SFTConfig", "GRPOConfig"], model_args: "ModelConfig"
) -> None:
task_list = LIGHTEVAL_TASKS[benchmark]
model_name = training_args.hub_model_id
model_revision = training_args.hub_model_revision
# For large models >= 30b params or those running the MATH benchmark, we need to shard them across the GPUs to avoid OOM
num_gpus = get_gpu_count_for_vllm(model_name, model_revision)
if get_param_count_from_repo_id(model_name) >= 30_000_000_000:
tensor_parallel = True
else:
tensor_parallel = False
cmd = VLLM_SLURM_PREFIX.copy()
cmd_args = [
f"--gres=gpu:{num_gpus}",
f"--job-name=or1_{benchmark}_{model_name.split('/')[-1]}_{model_revision}",
"slurm/evaluate.slurm",
benchmark,
f'"{task_list}"',
model_name,
model_revision,
f"{tensor_parallel}",
f"{model_args.trust_remote_code}",
]
if training_args.system_prompt is not None:
cmd_args.append(f"--system_prompt={training_args.system_prompt}")
cmd[-1] += " " + " ".join(cmd_args)
subprocess.run(cmd, check=True)
def run_benchmark_jobs(training_args: Union["SFTConfig", "GRPOConfig"], model_args: "ModelConfig") -> None:
benchmarks = training_args.benchmarks
if len(benchmarks) == 1 and benchmarks[0] == "all":
benchmarks = get_lighteval_tasks()
# Evaluate on all supported benchmarks. Later we may want to include a `chat` option
# that just evaluates on `ifeval` and `mt_bench` etc.
for benchmark in benchmarks:
print(f"Launching benchmark `{benchmark}`")
if benchmark in get_lighteval_tasks():
run_lighteval_job(benchmark, training_args, model_args)
else:
raise ValueError(f"Unknown benchmark {benchmark}")