Fortrain/qw/open_r1/sft.py
2025-03-31 15:56:36 +08:00

346 lines
13 KiB
Python
Executable File

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Supervised fine-tuning script for decoder language models.
Usage:
# One 1 node of 8 x H100s
accelerate launch --config_file=configs/zero3.yaml src/open_r1/sft.py \
--model_name_or_path Qwen/Qwen2.5-1.5B-Instruct \
--dataset_name HuggingFaceH4/Bespoke-Stratos-17k \
--learning_rate 2.0e-5 \
--num_train_epochs 1 \
--packing \
--max_seq_length 4096 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--gradient_checkpointing \
--bf16 \
--logging_steps 5 \
--eval_strategy steps \
--eval_steps 100 \
--output_dir data/Qwen2.5-1.5B-Open-R1-Distill
"""
import logging
import os
import sys
import datasets
import torch
from torch.utils.data import Dataset
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed, AutoProcessor
from transformers.trainer_utils import get_last_checkpoint
from open_r1.configs import SFTConfig
from open_r1.utils.callbacks import get_callbacks
import yaml
import json
import math
import random
from PIL import Image
from trl import (
ModelConfig,
ScriptArguments,
SFTTrainer,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from dataclasses import field
from qwen_vl_utils import process_vision_info
logger = logging.getLogger(__name__)
from dataclasses import dataclass
@dataclass
class SFTScriptArguments(ScriptArguments):
image_root: str = field(default=None, metadata={"help": "The root directory of the image."})
processor = None
class LazySupervisedDataset(Dataset):
def __init__(self, data_path: str, script_args: ScriptArguments):
super(LazySupervisedDataset, self).__init__()
self.script_args = script_args
self.list_data_dict = []
if data_path.endswith(".yaml"):
with open(data_path, "r") as file:
yaml_data = yaml.safe_load(file)
datasets = yaml_data.get("datasets")
# file should be in the format of:
# datasets:
# - json_path: xxxx1.json
# sampling_strategy: first:1000
# - json_path: xxxx2.json
# sampling_strategy: end:3000
# - json_path: xxxx3.json
# sampling_strategy: random:999
for data in datasets:
json_path = data.get("json_path")
sampling_strategy = data.get("sampling_strategy", "all")
sampling_number = None
if json_path.endswith(".jsonl"):
cur_data_dict = []
with open(json_path, "r") as json_file:
for line in json_file:
cur_data_dict.append(json.loads(line.strip()))
elif json_path.endswith(".json"):
with open(json_path, "r") as json_file:
cur_data_dict = json.load(json_file)
else:
raise ValueError(f"Unsupported file type: {json_path}")
if ":" in sampling_strategy:
sampling_strategy, sampling_number = sampling_strategy.split(":")
if "%" in sampling_number:
sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100)
else:
sampling_number = int(sampling_number)
# Apply the sampling strategy
if sampling_strategy == "first" and sampling_number is not None:
cur_data_dict = cur_data_dict[:sampling_number]
elif sampling_strategy == "end" and sampling_number is not None:
cur_data_dict = cur_data_dict[-sampling_number:]
elif sampling_strategy == "random" and sampling_number is not None:
random.shuffle(cur_data_dict)
cur_data_dict = cur_data_dict[:sampling_number]
print(f"Loaded {len(cur_data_dict)} samples from {json_path}")
self.list_data_dict.extend(cur_data_dict)
else:
raise ValueError(f"Unsupported file type: {data_path}")
def __len__(self):
return len(self.list_data_dict)
def __getitem__(self, i):
# Format into conversation
def make_conversation_image(example):
image_root = self.script_args.image_root
# print(111, image_root)
# print(222, example['image'])
image_path = os.path.join(image_root, example['image'])
x1, y1, x2, y2 = example["solution"]
normal_caption = example["normal_caption"]
return [
{
"role": "user",
"content": [
{"type": "image", "image": f"file://{image_path}"},
{"type": "text", "text": example["problem"]},
],
},
{
"role": "assistant",
"content": f'```json\n[\n\t{{"bbox_2d": [{int(x1)}, {int(y1)}, {int(x2)}, {int(y2)}], "label": "{normal_caption}"}}\n]\n```',
}
]
example = self.list_data_dict[i]
example["messages"] = make_conversation_image(example)
return example
def collate_fn(examples):
texts = [
processor.apply_chat_template(example["messages"], tokenize=False, add_generation_prompt=True)
for example in examples
]
image_inputs = []
for example in examples:
imgs, vids = process_vision_info(example["messages"])
image_inputs.append(imgs)
batch = processor(
text=texts,
images=image_inputs,
return_tensors="pt",
padding=True,
)
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token)
labels[labels == image_token_id] = -100
batch["labels"] = labels
return batch
def main(script_args, training_args, model_args):
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Model parameters {model_args}")
logger.info(f"Script parameters {script_args}")
logger.info(f"Data parameters {training_args}")
# Check for last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
################
# Load datasets
################
dataset = LazySupervisedDataset(script_args.dataset_name, script_args)
################
# Load tokenizer
################
global processor
if "vl" in model_args.model_name_or_path.lower():
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
logger.info("Using AutoProcessor for vision-language model.")
else:
processor = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True
)
logger.info("Using AutoTokenizer for text-only model.")
if hasattr(processor, "pad_token") and processor.pad_token is None:
processor.pad_token = processor.eos_token
elif hasattr(processor.tokenizer, "pad_token") and processor.tokenizer.pad_token is None:
processor.tokenizer.pad_token = processor.tokenizer.eos_token
###################
# Model init kwargs
###################
logger.info("*** Initializing model kwargs ***")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
# training_args.model_init_kwargs = model_kwargs
from transformers import Qwen2VLForConditionalGeneration, Qwen2_5_VLForConditionalGeneration
if "Qwen2-VL" in model_args.model_name_or_path:
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path, **model_kwargs
)
elif "Qwen2.5-VL" in model_args.model_name_or_path:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path, **model_kwargs
)
else:
raise ValueError(f"Unsupported model: {model_args.model_name_or_path}")
############################
# Initialize the SFT Trainer
############################
training_args.dataset_kwargs = {
"skip_prepare_dataset": True,
}
training_args.remove_unused_columns = False
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=None,
processing_class=processor.tokenizer,
data_collator=collate_fn,
peft_config=get_peft_config(model_args),
callbacks=get_callbacks(training_args, model_args),
)
###############
# Training loop
###############
logger.info("*** Train ***")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(dataset[script_args.dataset_train_split])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(script_args.dataset_name),
"dataset_tags": list(script_args.dataset_name),
"tags": ["open-r1"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
#############
# push to hub
#############
if training_args.push_to_hub:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
print(script_args)
main(script_args, training_args, model_args)