import os os.environ['CUDA_VISIBLE_DEVICES'] = '3' import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer import requests from io import BytesIO from urllib.parse import urlparse from torch.profiler import profile, record_function, ProfilerActivity import time import pickle import random from datetime import datetime IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): # 如果已经是 PIL Image 对象 if isinstance(image_file, Image.Image): image = image_file.convert('RGB') # 如果是 URL elif isinstance(image_file, str) and bool(urlparse(image_file).netloc): try: response = requests.get(image_file, timeout=10) response.raise_for_status() # 检查请求是否成功 image = Image.open(BytesIO(response.content)).convert('RGB') except Exception as e: raise ValueError(f"无法从URL加载图片: {str(e)}") # 如果是本地文件路径 elif isinstance(image_file, str): image = Image.open(image_file).convert('RGB') # 如果是字节数据 elif isinstance(image_file, bytes): image = Image.open(BytesIO(image_file)).convert('RGB') else: raise ValueError(f"不支持的图片格式: {type(image_file)}") transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'Internvl2_5' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, vision_model = None, language_model = None).eval().cuda() # 加载要测试的权重 state_dict = torch.load("mlp_epoch_5.pth") # 加载训练好的权重 model.load_state_dict(state_dict) generation_config = dict(max_new_tokens=1024, do_sample=True) tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) print(model) # 测试 # 加载数据 with open('batch_1.pkl', 'rb') as f: data = pickle.load(f) # 随机选择100条数据 test_samples = random.sample(data, 100) # 创建结果文件 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") results_file = f'test_results_{timestamp}.txt' with open(results_file, 'w', encoding='utf-8') as f: for i, test_item in enumerate(test_samples, 1): question = "Identify the brand of the product in the picture, and write a caption including brand information in 200 words." expected_answer = test_item['response'] try: pixel_values = load_image(test_item['image'], max_num=12).to(torch.bfloat16).cuda() response, _ = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) # 写入结果 f.write(f"Test case {i}/100:\n") f.write(f"Question: {question}\n") f.write(f"Expected: {expected_answer}\n") f.write(f"Response: {response}\n") f.write("-" * 50 + "\n") # 打印进度 print(f"Processed {i}/100 samples") except Exception as e: f.write(f"Test case {i}/100 - ERROR:\n") f.write(f"Error message: {str(e)}\n") f.write("-" * 50 + "\n") print(f"Error processing sample {i}: {str(e)}") print(f"测试完成!结果已保存到文件:{results_file}")