first commit

This commit is contained in:
Zixiao Wang 2025-02-13 17:15:57 +08:00
commit 655260aabf
3 changed files with 480 additions and 0 deletions

202
predata.py Normal file
View File

@ -0,0 +1,202 @@
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import requests
from io import BytesIO
from urllib.parse import urlparse
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
# 处理不同类型的输入
if isinstance(image_file, Image.Image):
image = image_file.convert('RGB')
elif isinstance(image_file, str) and bool(urlparse(image_file).netloc):
try:
response = requests.get(image_file, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert('RGB')
except Exception as e:
raise ValueError(f"无法从URL加载图片: {str(e)}")
elif isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
elif isinstance(image_file, bytes):
image = Image.open(BytesIO(image_file)).convert('RGB')
else:
raise ValueError(f"不支持的图片格式: {type(image_file)}")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def prepare_training_data(question: str, answer: str, tokenizer, image_path=None, input_size=448, max_num=12, num_image_token: int = 256):
"""
准备完整的训练数据包括输入和标签
Args:
question (str): 用户输入的问题
answer (str): 助手的回答文本
tokenizer: 分词器
image_path: 图片路径URL或PIL Image对象
input_size (int): 图片输入尺寸
max_num (int): 最大图片块数
num_image_token (int): 每张图片的token数量
Returns:
dict: 包含模型训练所需的所有输入
"""
# 1. 处理图像输入
pixel_values = None
if image_path is not None:
pixel_values = load_image(image_path, input_size=input_size, max_num=max_num)[-1:] ### 只取最后一张图片
if torch.cuda.is_available():
pixel_values = pixel_values.to(torch.bfloat16)
# 2. 确保问题包含图片标记
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
# 3. 根据pixel_values确定num_patches
num_patches = pixel_values.shape[0] if pixel_values is not None else 0
# 4. 构造完整的对话内容
system_msg = "你是书生·万象英文名是InternVL是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。"
# 5. 替换图片标记
if num_patches > 0:
image_tokens = "<img>" + "<IMG_CONTEXT>" * (num_image_token * num_patches) + "</img>"
question = question.replace('<image>', image_tokens, 1)
# 6. 构造完整的query包含答案
full_prompt = (
f"<|im_start|>system\n{system_msg}<|im_end|>\n"
f"<|im_start|>user\n{question}<|im_end|>\n"
f"<|im_start|>assistant\n{answer}<|im_end|>\n"
)
# 7. 转换为模型输入格式
model_inputs = tokenizer(
full_prompt,
return_tensors="pt",
add_special_tokens=False
)
# 8. 构造labels
input_ids = model_inputs["input_ids"]
labels = input_ids.clone()
assistant_start_token = "<|im_start|>assistant\n"
assistant_token_ids = tokenizer(assistant_start_token, add_special_tokens=False)["input_ids"]
assistant_start_pos = None
for i in range(len(input_ids[0]) - len(assistant_token_ids)):
if input_ids[0][i:i+len(assistant_token_ids)].tolist() == assistant_token_ids:
assistant_start_pos = i
break
if assistant_start_pos is not None:
labels[0, :assistant_start_pos] = -100
return {
"input_ids": input_ids,
"attention_mask": model_inputs["attention_mask"],
"labels": labels,
"pixel_values": pixel_values
}
# 使用示例:
"""
import torch
from transformers import AutoTokenizer
# 初始化tokenizer
tokenizer = AutoTokenizer.from_pretrained("path_to_tokenizer")
# 准备示例数据
question = "请描述这张图片中的内容"
answer = "这是一张美丽的风景照,画面中有青山绿水。"
image_path = "./examples/image1.jpg" # 或URL或PIL Image对象
# 准备训练数据
training_data = prepare_training_data(
question=question,
answer=answer,
tokenizer=tokenizer,
image_path=image_path,
input_size=448,
max_num=12
)
# training_data 包含:
# {
# "input_ids": tensor([[...]]), # 完整对话的token ids
# "attention_mask": tensor([[...]]), # 注意力掩码
# "labels": tensor([[...]]), # 带有-100标记的标签
# "pixel_values": tensor([[...]]) # 图像数据
# }
"""

44
totrain.py Normal file
View File

@ -0,0 +1,44 @@
from datasets import load_dataset
import requests
from PIL import Image
from io import BytesIO
import pandas as pd
ds = load_dataset("ckandemir/amazon-products")
valid_data = []
processed_count = 0 # 用于追踪成功处理的数量
# 遍历数据集进行验证
for idx, item in enumerate(ds['train']):
# 检查Product Name是否为空
if not item['Product Name'] or pd.isna(item['Product Name']):
continue
# 验证图片URL是否可以加载
try:
response = requests.get(item['Image'], timeout=5)
if response.status_code == 200:
# 尝试将图片加载为PIL Image对象
image = Image.open(BytesIO(response.content))
# 如果成功加载,保存图片对象和产品名称
valid_data.append({
'image': image,
'name': item['Product Name']
})
processed_count += 1
# 每成功处理100条数据输出一次信息
if processed_count % 100 == 0:
print(f"已成功处理 {processed_count} 条数据,当前处理到第 {idx+1}")
except Exception as e:
continue
print(f"\n处理完成!")
print(f"原始数据数量: {len(ds['train'])}")
print(f"清洗后的有效数据数量: {len(valid_data)}")
# 保存处理后的数据
import pickle
with open('valid_products.pkl', 'wb') as f:
pickle.dump(valid_data, f)

234
zhtrain.py Normal file
View File

@ -0,0 +1,234 @@
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'
import pickle
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from predata import prepare_training_data
from transformers import AutoTokenizer, AutoModel
import torch.nn as nn
from torch.optim import AdamW
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("Internvl2_5")
# 加载处理好的数据
print("正在加载数据...")
with open('valid_products.pkl', 'rb') as f:
data = pickle.load(f)
print(f"成功加载数据,共 {len(data)} 条记录")
class ProductDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
question = "Tell me the product name in the picture."
answer = "The product name is: " + item['name']
# 直接使用prepare_training_data处理所有数据
training_data = prepare_training_data(
question=question,
answer=answer,
tokenizer=self.tokenizer,
image_path=item['image'] # 直接传入PIL Image对象
)
return training_data
# 创建数据集实例
dataset = ProductDataset(data, tokenizer)
# 测试输出第一条数据看看
sample = dataset[0]
print("\n数据样例:")
print(f"输入形状: {sample['input_ids'].shape}")
print(f"图片张量形状: {sample['pixel_values'].shape}")
print(f"标签形状: {sample['labels'].shape}")
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
path = 'Internvl2_5'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
vision_model = None,
language_model = None).train().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# 加载之前训练的权重
print("正在加载预训练权重 model_epoch_5.pth ...")
model.load_state_dict(torch.load('model_epoch_5.pth'))
print("成功加载预训练权重")
def prepare_model_for_training(model, cast_trainable_params_to_fp32=True):
print("正在设置模型参数...")
# 冻结vision_model
for param in model.vision_model.parameters():
param.requires_grad_(False)
# 冻结language_model
for param in model.language_model.parameters():
param.requires_grad_(False)
# 设置mlp1为可训练并可选转换为fp32
# for param in model.mlp1.parameters():
# if cast_trainable_params_to_fp32:
# param.data = param.data.to(torch.float32)
# 打印可训练参数数量
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"可训练参数数量: {trainable_params}")
return model
# 准备模型
model = prepare_model_for_training(model)
# 只对可训练参数创建优化器
optimizer = AdamW(
[p for p in model.parameters() if p.requires_grad],
lr=1e-4, # 学习率
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.01
)
def custom_collate_fn(batch):
"""
自定义collate函数来处理变长序列
"""
# 获取batch中最大的序列长度
max_len = max([b['input_ids'].size(1) for b in batch])
batch_size = len(batch)
# 创建填充后的张量
input_ids = torch.zeros((batch_size, max_len), dtype=batch[0]['input_ids'].dtype)
attention_mask = torch.zeros((batch_size, max_len), dtype=batch[0]['attention_mask'].dtype)
labels = torch.full((batch_size, max_len), -100, dtype=batch[0]['labels'].dtype) # 用-100填充标签
# 填充每个样本
for i, item in enumerate(batch):
seq_len = item['input_ids'].size(1)
input_ids[i, :seq_len] = item['input_ids'][0, :seq_len]
attention_mask[i, :seq_len] = item['attention_mask'][0, :seq_len]
labels[i, :seq_len] = item['labels'][0, :seq_len]
# 处理pixel_values (这个应该是固定大小的)
pixel_values = torch.stack([item['pixel_values'] for item in batch])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'pixel_values': pixel_values
}
# 使用自定义的collate_fn创建DataLoader
train_loader = DataLoader(
dataset,
batch_size=5, # 可以根据需要调整
shuffle=True,
pin_memory=torch.cuda.is_available(),
collate_fn=custom_collate_fn # 使用自定义的collate函数
)
# 计算img_context_token_id
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
def extract_feature(model, pixel_values):
# 移除多余的维度
if pixel_values.dim() == 5: # [batch_size, 1, 3, 448, 448]
pixel_values = pixel_values.squeeze(1) # 变成 [batch_size, 3, 448, 448]
# 使用vision_model提取特征
vit_embeds = model.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True
).last_hidden_state
vit_embeds = vit_embeds[:, 1:, :] # 移除CLS token
# 重塑并处理特征
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = model.pixel_shuffle(vit_embeds, scale_factor=model.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = model.mlp1(vit_embeds)
return vit_embeds
# 训练循环
num_epochs = 40 # 修改为40个epochs
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_idx, batch in enumerate(train_loader):
# 将数据移到GPU
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
pixel_values = batch['pixel_values'].to(device)
# 提取图像特征
vit_embeds = extract_feature(model, pixel_values)
# 计算输入嵌入
input_embeds = model.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# 替换图像上下文token的嵌入
input_ids_flat = input_ids.reshape(B * N)
selected = (input_ids_flat == img_context_token_id)
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
# 恢复原始形状
input_embeds = input_embeds.reshape(B, N, C)
# 前向传播
outputs = model.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
labels=labels,
return_dict=True
)
loss = outputs.loss
total_loss += loss.item()
# 反向传播
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 每100步打印一次loss
if batch_idx % 100 == 0:
print(f'Epoch: {epoch}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
# 每个epoch结束打印平均loss
avg_loss = total_loss / len(train_loader)
print(f'Epoch {epoch} completed. Average Loss: {avg_loss:.4f}')
# 每10个epoch保存一次模型
if (epoch + 1) % 10 == 0:
save_path = f'model_epoch_{epoch+1}.pth'
print(f"保存模型权重到 {save_path}")
torch.save(model.state_dict(), save_path)