提交获取caption和删除多余文本和测试模型的脚本

This commit is contained in:
Zixiao Wang 2025-02-19 13:00:04 +08:00
parent 655260aabf
commit 59ed3586c7
3 changed files with 379 additions and 0 deletions

43
clean_text.py Normal file
View File

@ -0,0 +1,43 @@
import pickle
def clean_text(text):
# 将文本反转
reversed_text = text[::-1]
# 查找第一个句号的位置
dot_pos = reversed_text.find('.')
if dot_pos == -1: # 如果没有找到句号
return text
# 删除句号之前的所有文本,然后再次反转
cleaned_text = reversed_text[dot_pos:][::-1]
return cleaned_text.strip()
# 加载原始数据
print("正在加载数据...")
with open('batch_1.pkl', 'rb') as f:
data = pickle.load(f)
# 处理文本
print("正在处理文本...")
cleaned_data = []
for item in data:
cleaned_item = item.copy() # 复制原始数据项
cleaned_item['response'] = clean_text(item['response'])
cleaned_data.append(cleaned_item)
# 保存处理后的数据
print("正在保存清理后的数据...")
with open('batch_1_cleaned.pkl', 'wb') as f:
pickle.dump(cleaned_data, f)
# 打印示例
print("\n处理示例:")
for i in range(min(3, len(data))):
print(f"\n原始文本 {i+1}:")
print(data[i]['response'])
print(f"\n处理后文本 {i+1}:")
print(cleaned_data[i]['response'])
print(f"\n总数据量: {len(data)}")
print("数据已保存到 batch_1_cleaned.pkl")

168
test2.py Normal file
View File

@ -0,0 +1,168 @@
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import requests
from io import BytesIO
from urllib.parse import urlparse
from torch.profiler import profile, record_function, ProfilerActivity
import time
import pickle
import random
from datetime import datetime
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
# 如果已经是 PIL Image 对象
if isinstance(image_file, Image.Image):
image = image_file.convert('RGB')
# 如果是 URL
elif isinstance(image_file, str) and bool(urlparse(image_file).netloc):
try:
response = requests.get(image_file, timeout=10)
response.raise_for_status() # 检查请求是否成功
image = Image.open(BytesIO(response.content)).convert('RGB')
except Exception as e:
raise ValueError(f"无法从URL加载图片: {str(e)}")
# 如果是本地文件路径
elif isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
# 如果是字节数据
elif isinstance(image_file, bytes):
image = Image.open(BytesIO(image_file)).convert('RGB')
else:
raise ValueError(f"不支持的图片格式: {type(image_file)}")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'Internvl2_5'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
vision_model = None,
language_model = None).eval().cuda()
# 加载要测试的权重
state_dict = torch.load("mlp_epoch_5.pth") # 加载训练好的权重
model.load_state_dict(state_dict)
generation_config = dict(max_new_tokens=1024, do_sample=True)
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
print(model)
# 测试
# 加载数据
with open('batch_1.pkl', 'rb') as f:
data = pickle.load(f)
# 随机选择100条数据
test_samples = random.sample(data, 100)
# 创建结果文件
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f'test_results_{timestamp}.txt'
with open(results_file, 'w', encoding='utf-8') as f:
for i, test_item in enumerate(test_samples, 1):
question = "Identify the brand of the product in the picture, and write a caption including brand information in 200 words."
expected_answer = test_item['response']
try:
pixel_values = load_image(test_item['image'], max_num=12).to(torch.bfloat16).cuda()
response, _ = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
# 写入结果
f.write(f"Test case {i}/100:\n")
f.write(f"Question: {question}\n")
f.write(f"Expected: {expected_answer}\n")
f.write(f"Response: {response}\n")
f.write("-" * 50 + "\n")
# 打印进度
print(f"Processed {i}/100 samples")
except Exception as e:
f.write(f"Test case {i}/100 - ERROR:\n")
f.write(f"Error message: {str(e)}\n")
f.write("-" * 50 + "\n")
print(f"Error processing sample {i}: {str(e)}")
print(f"测试完成!结果已保存到文件:{results_file}")

168
webdata.py Normal file
View File

@ -0,0 +1,168 @@
from openai import OpenAI
import base64
from datasets import load_dataset
import requests
from PIL import Image
from io import BytesIO
import pickle
import logging
from datetime import datetime
import concurrent.futures
import threading
from tqdm import tqdm
ds = load_dataset("DBQ/My.Theresa.Product.prices.France")
# 打印数据集信息
print(f"数据集加载完成,共包含 {len(ds)} 条数据")
# 初始化客户端
client = OpenAI(
api_key='sk-xqbujijjqqmlmlvkhvxeogqjtzslnhdtqxqgiyuhwpoqcjvf',
base_url='https://api.siliconflow.cn/v1' # 通义千问API的基础URL
)
# 添加线程锁用于安全打印和保存
print_lock = threading.Lock()
results_lock = threading.Lock()
def encode_image_to_base64(image_path):
"""将本地图片转换为base64编码"""
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except Exception as e:
return None
# 使用ChatGPT模型
def chat_with_gpt(prompt, image_inputs=None):
try:
messages = []
content = [{"type": "text", "text": prompt}]
if image_inputs:
# 确保image_inputs是列表
if not isinstance(image_inputs, list):
image_inputs = [image_inputs]
# 处理每张图片
for image_input in image_inputs:
if image_input.startswith(('http://', 'https://')):
image_data = {
"type": "image_url",
"image_url": {"url": image_input}
}
else:
# 处理本地图片
base64_image = encode_image_to_base64(image_input)
if base64_image:
image_data = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
else:
raise Exception("无法读取本地图片")
content.append(image_data)
messages.append({
"role": "user",
"content": content
})
response = client.chat.completions.create(
model="Qwen/QVQ-72B-Preview",
messages=messages,
temperature=0.1, # 降低温度使输出更加确定性
top_p=0.2, # 降低采样范围,使输出更加保守
max_tokens=200, # 控制回答长度
presence_penalty=0.0, # 不鼓励模型谈论新主题
frequency_penalty=0.0, # 不惩罚频繁词汇
stream=False
)
return response.choices[0].message.content
except Exception as e:
return f"发生错误:{str(e)}"
# 设置日志配置
def setup_logging():
# 创建日志文件名(包含时间戳)
log_filename = f'process_log_{datetime.now().strftime("%Y%m%d_%H%M%S")}.txt'
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_filename, encoding='utf-8'),
logging.StreamHandler() # 同时输出到控制台
]
)
return log_filename
def process_single_item(item):
"""处理单个数据项的函数"""
try:
image_url = item['imageurl']
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
prompt = f"The brand of the product in the picture is {item['brand']}, write a caption including brand information."
gpt_response = chat_with_gpt(prompt, image_url)
return {
'brand': item['brand'],
'image': img,
'response': gpt_response
}
except Exception as e:
with print_lock:
logging.error(f"处理数据时出错: {str(e)}")
return None
def process_dataset(ds, batch_size=20000, max_workers=10):
results = []
valid_count = 0
total_items = len(ds['train'])
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
# 创建进度条
with tqdm(total=total_items, desc="处理数据") as pbar:
# 提交所有任务
future_to_item = {executor.submit(process_single_item, item): i
for i, item in enumerate(ds['train'])}
# 处理完成的任务
for future in concurrent.futures.as_completed(future_to_item):
result = future.result()
if result:
with results_lock:
results.append(result)
valid_count += 1
# 达到batch_size时保存
if len(results) >= batch_size:
save_results(results, valid_count // batch_size)
results = []
pbar.update(1)
# 保存剩余结果
if results:
save_results(results, (valid_count // batch_size) + 1)
logging.info(f"处理完成,共处理 {valid_count} 条有效数据")
def save_results(results, batch_num):
# 保存为pickle文件
with open(f'batch_{batch_num}.pkl', 'wb') as f:
pickle.dump(results, f)
# 运行处理
if __name__ == "__main__":
# 设置日志
log_file = setup_logging()
logging.info("开始处理数据集")
logging.info(f"数据集加载完成,共包含 {len(ds)} 条数据")
process_dataset(ds)