提交获取caption和删除多余文本和测试模型的脚本
This commit is contained in:
parent
655260aabf
commit
59ed3586c7
43
clean_text.py
Normal file
43
clean_text.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
import pickle
|
||||||
|
|
||||||
|
def clean_text(text):
|
||||||
|
# 将文本反转
|
||||||
|
reversed_text = text[::-1]
|
||||||
|
# 查找第一个句号的位置
|
||||||
|
dot_pos = reversed_text.find('.')
|
||||||
|
|
||||||
|
if dot_pos == -1: # 如果没有找到句号
|
||||||
|
return text
|
||||||
|
|
||||||
|
# 删除句号之前的所有文本,然后再次反转
|
||||||
|
cleaned_text = reversed_text[dot_pos:][::-1]
|
||||||
|
return cleaned_text.strip()
|
||||||
|
|
||||||
|
# 加载原始数据
|
||||||
|
print("正在加载数据...")
|
||||||
|
with open('batch_1.pkl', 'rb') as f:
|
||||||
|
data = pickle.load(f)
|
||||||
|
|
||||||
|
# 处理文本
|
||||||
|
print("正在处理文本...")
|
||||||
|
cleaned_data = []
|
||||||
|
for item in data:
|
||||||
|
cleaned_item = item.copy() # 复制原始数据项
|
||||||
|
cleaned_item['response'] = clean_text(item['response'])
|
||||||
|
cleaned_data.append(cleaned_item)
|
||||||
|
|
||||||
|
# 保存处理后的数据
|
||||||
|
print("正在保存清理后的数据...")
|
||||||
|
with open('batch_1_cleaned.pkl', 'wb') as f:
|
||||||
|
pickle.dump(cleaned_data, f)
|
||||||
|
|
||||||
|
# 打印示例
|
||||||
|
print("\n处理示例:")
|
||||||
|
for i in range(min(3, len(data))):
|
||||||
|
print(f"\n原始文本 {i+1}:")
|
||||||
|
print(data[i]['response'])
|
||||||
|
print(f"\n处理后文本 {i+1}:")
|
||||||
|
print(cleaned_data[i]['response'])
|
||||||
|
|
||||||
|
print(f"\n总数据量: {len(data)}")
|
||||||
|
print("数据已保存到 batch_1_cleaned.pkl")
|
168
test2.py
Normal file
168
test2.py
Normal file
@ -0,0 +1,168 @@
|
|||||||
|
import os
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as T
|
||||||
|
from PIL import Image
|
||||||
|
from torchvision.transforms.functional import InterpolationMode
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
import requests
|
||||||
|
from io import BytesIO
|
||||||
|
from urllib.parse import urlparse
|
||||||
|
from torch.profiler import profile, record_function, ProfilerActivity
|
||||||
|
import time
|
||||||
|
import pickle
|
||||||
|
import random
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
||||||
|
IMAGENET_STD = (0.229, 0.224, 0.225)
|
||||||
|
|
||||||
|
def build_transform(input_size):
|
||||||
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
||||||
|
transform = T.Compose([
|
||||||
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
||||||
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
||||||
|
T.ToTensor(),
|
||||||
|
T.Normalize(mean=MEAN, std=STD)
|
||||||
|
])
|
||||||
|
return transform
|
||||||
|
|
||||||
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||||||
|
best_ratio_diff = float('inf')
|
||||||
|
best_ratio = (1, 1)
|
||||||
|
area = width * height
|
||||||
|
for ratio in target_ratios:
|
||||||
|
target_aspect_ratio = ratio[0] / ratio[1]
|
||||||
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||||||
|
if ratio_diff < best_ratio_diff:
|
||||||
|
best_ratio_diff = ratio_diff
|
||||||
|
best_ratio = ratio
|
||||||
|
elif ratio_diff == best_ratio_diff:
|
||||||
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||||||
|
best_ratio = ratio
|
||||||
|
return best_ratio
|
||||||
|
|
||||||
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
||||||
|
orig_width, orig_height = image.size
|
||||||
|
aspect_ratio = orig_width / orig_height
|
||||||
|
|
||||||
|
# calculate the existing image aspect ratio
|
||||||
|
target_ratios = set(
|
||||||
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||||||
|
i * j <= max_num and i * j >= min_num)
|
||||||
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||||||
|
|
||||||
|
# find the closest aspect ratio to the target
|
||||||
|
target_aspect_ratio = find_closest_aspect_ratio(
|
||||||
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||||||
|
|
||||||
|
# calculate the target width and height
|
||||||
|
target_width = image_size * target_aspect_ratio[0]
|
||||||
|
target_height = image_size * target_aspect_ratio[1]
|
||||||
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||||||
|
|
||||||
|
# resize the image
|
||||||
|
resized_img = image.resize((target_width, target_height))
|
||||||
|
processed_images = []
|
||||||
|
for i in range(blocks):
|
||||||
|
box = (
|
||||||
|
(i % (target_width // image_size)) * image_size,
|
||||||
|
(i // (target_width // image_size)) * image_size,
|
||||||
|
((i % (target_width // image_size)) + 1) * image_size,
|
||||||
|
((i // (target_width // image_size)) + 1) * image_size
|
||||||
|
)
|
||||||
|
# split the image
|
||||||
|
split_img = resized_img.crop(box)
|
||||||
|
processed_images.append(split_img)
|
||||||
|
assert len(processed_images) == blocks
|
||||||
|
if use_thumbnail and len(processed_images) != 1:
|
||||||
|
thumbnail_img = image.resize((image_size, image_size))
|
||||||
|
processed_images.append(thumbnail_img)
|
||||||
|
return processed_images
|
||||||
|
|
||||||
|
def load_image(image_file, input_size=448, max_num=12):
|
||||||
|
# 如果已经是 PIL Image 对象
|
||||||
|
if isinstance(image_file, Image.Image):
|
||||||
|
image = image_file.convert('RGB')
|
||||||
|
# 如果是 URL
|
||||||
|
elif isinstance(image_file, str) and bool(urlparse(image_file).netloc):
|
||||||
|
try:
|
||||||
|
response = requests.get(image_file, timeout=10)
|
||||||
|
response.raise_for_status() # 检查请求是否成功
|
||||||
|
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||||
|
except Exception as e:
|
||||||
|
raise ValueError(f"无法从URL加载图片: {str(e)}")
|
||||||
|
# 如果是本地文件路径
|
||||||
|
elif isinstance(image_file, str):
|
||||||
|
image = Image.open(image_file).convert('RGB')
|
||||||
|
# 如果是字节数据
|
||||||
|
elif isinstance(image_file, bytes):
|
||||||
|
image = Image.open(BytesIO(image_file)).convert('RGB')
|
||||||
|
else:
|
||||||
|
raise ValueError(f"不支持的图片格式: {type(image_file)}")
|
||||||
|
|
||||||
|
transform = build_transform(input_size=input_size)
|
||||||
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
||||||
|
pixel_values = [transform(image) for image in images]
|
||||||
|
pixel_values = torch.stack(pixel_values)
|
||||||
|
return pixel_values
|
||||||
|
|
||||||
|
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
||||||
|
path = 'Internvl2_5'
|
||||||
|
model = AutoModel.from_pretrained(
|
||||||
|
path,
|
||||||
|
torch_dtype=torch.bfloat16,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
use_flash_attn=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
vision_model = None,
|
||||||
|
language_model = None).eval().cuda()
|
||||||
|
|
||||||
|
# 加载要测试的权重
|
||||||
|
state_dict = torch.load("mlp_epoch_5.pth") # 加载训练好的权重
|
||||||
|
model.load_state_dict(state_dict)
|
||||||
|
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
||||||
|
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
# 测试
|
||||||
|
# 加载数据
|
||||||
|
with open('batch_1.pkl', 'rb') as f:
|
||||||
|
data = pickle.load(f)
|
||||||
|
|
||||||
|
# 随机选择100条数据
|
||||||
|
test_samples = random.sample(data, 100)
|
||||||
|
|
||||||
|
# 创建结果文件
|
||||||
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
results_file = f'test_results_{timestamp}.txt'
|
||||||
|
|
||||||
|
with open(results_file, 'w', encoding='utf-8') as f:
|
||||||
|
for i, test_item in enumerate(test_samples, 1):
|
||||||
|
question = "Identify the brand of the product in the picture, and write a caption including brand information in 200 words."
|
||||||
|
expected_answer = test_item['response']
|
||||||
|
|
||||||
|
try:
|
||||||
|
pixel_values = load_image(test_item['image'], max_num=12).to(torch.bfloat16).cuda()
|
||||||
|
response, _ = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
||||||
|
|
||||||
|
# 写入结果
|
||||||
|
f.write(f"Test case {i}/100:\n")
|
||||||
|
f.write(f"Question: {question}\n")
|
||||||
|
f.write(f"Expected: {expected_answer}\n")
|
||||||
|
f.write(f"Response: {response}\n")
|
||||||
|
f.write("-" * 50 + "\n")
|
||||||
|
|
||||||
|
# 打印进度
|
||||||
|
print(f"Processed {i}/100 samples")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
f.write(f"Test case {i}/100 - ERROR:\n")
|
||||||
|
f.write(f"Error message: {str(e)}\n")
|
||||||
|
f.write("-" * 50 + "\n")
|
||||||
|
print(f"Error processing sample {i}: {str(e)}")
|
||||||
|
|
||||||
|
print(f"测试完成!结果已保存到文件:{results_file}")
|
168
webdata.py
Normal file
168
webdata.py
Normal file
@ -0,0 +1,168 @@
|
|||||||
|
from openai import OpenAI
|
||||||
|
import base64
|
||||||
|
from datasets import load_dataset
|
||||||
|
import requests
|
||||||
|
from PIL import Image
|
||||||
|
from io import BytesIO
|
||||||
|
import pickle
|
||||||
|
import logging
|
||||||
|
from datetime import datetime
|
||||||
|
import concurrent.futures
|
||||||
|
import threading
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
ds = load_dataset("DBQ/My.Theresa.Product.prices.France")
|
||||||
|
# 打印数据集信息
|
||||||
|
print(f"数据集加载完成,共包含 {len(ds)} 条数据")
|
||||||
|
|
||||||
|
# 初始化客户端
|
||||||
|
client = OpenAI(
|
||||||
|
api_key='sk-xqbujijjqqmlmlvkhvxeogqjtzslnhdtqxqgiyuhwpoqcjvf',
|
||||||
|
base_url='https://api.siliconflow.cn/v1' # 通义千问API的基础URL
|
||||||
|
)
|
||||||
|
|
||||||
|
# 添加线程锁用于安全打印和保存
|
||||||
|
print_lock = threading.Lock()
|
||||||
|
results_lock = threading.Lock()
|
||||||
|
|
||||||
|
def encode_image_to_base64(image_path):
|
||||||
|
"""将本地图片转换为base64编码"""
|
||||||
|
try:
|
||||||
|
with open(image_path, "rb") as image_file:
|
||||||
|
return base64.b64encode(image_file.read()).decode('utf-8')
|
||||||
|
except Exception as e:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# 使用ChatGPT模型
|
||||||
|
def chat_with_gpt(prompt, image_inputs=None):
|
||||||
|
try:
|
||||||
|
messages = []
|
||||||
|
content = [{"type": "text", "text": prompt}]
|
||||||
|
|
||||||
|
if image_inputs:
|
||||||
|
# 确保image_inputs是列表
|
||||||
|
if not isinstance(image_inputs, list):
|
||||||
|
image_inputs = [image_inputs]
|
||||||
|
|
||||||
|
# 处理每张图片
|
||||||
|
for image_input in image_inputs:
|
||||||
|
if image_input.startswith(('http://', 'https://')):
|
||||||
|
image_data = {
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {"url": image_input}
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
# 处理本地图片
|
||||||
|
base64_image = encode_image_to_base64(image_input)
|
||||||
|
if base64_image:
|
||||||
|
image_data = {
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{base64_image}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
raise Exception("无法读取本地图片")
|
||||||
|
content.append(image_data)
|
||||||
|
|
||||||
|
messages.append({
|
||||||
|
"role": "user",
|
||||||
|
"content": content
|
||||||
|
})
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="Qwen/QVQ-72B-Preview",
|
||||||
|
messages=messages,
|
||||||
|
temperature=0.1, # 降低温度使输出更加确定性
|
||||||
|
top_p=0.2, # 降低采样范围,使输出更加保守
|
||||||
|
max_tokens=200, # 控制回答长度
|
||||||
|
presence_penalty=0.0, # 不鼓励模型谈论新主题
|
||||||
|
frequency_penalty=0.0, # 不惩罚频繁词汇
|
||||||
|
stream=False
|
||||||
|
)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
except Exception as e:
|
||||||
|
return f"发生错误:{str(e)}"
|
||||||
|
|
||||||
|
# 设置日志配置
|
||||||
|
def setup_logging():
|
||||||
|
# 创建日志文件名(包含时间戳)
|
||||||
|
log_filename = f'process_log_{datetime.now().strftime("%Y%m%d_%H%M%S")}.txt'
|
||||||
|
|
||||||
|
# 配置日志
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(levelname)s - %(message)s',
|
||||||
|
handlers=[
|
||||||
|
logging.FileHandler(log_filename, encoding='utf-8'),
|
||||||
|
logging.StreamHandler() # 同时输出到控制台
|
||||||
|
]
|
||||||
|
)
|
||||||
|
return log_filename
|
||||||
|
|
||||||
|
def process_single_item(item):
|
||||||
|
"""处理单个数据项的函数"""
|
||||||
|
try:
|
||||||
|
image_url = item['imageurl']
|
||||||
|
response = requests.get(image_url)
|
||||||
|
img = Image.open(BytesIO(response.content))
|
||||||
|
|
||||||
|
prompt = f"The brand of the product in the picture is {item['brand']}, write a caption including brand information."
|
||||||
|
gpt_response = chat_with_gpt(prompt, image_url)
|
||||||
|
|
||||||
|
return {
|
||||||
|
'brand': item['brand'],
|
||||||
|
'image': img,
|
||||||
|
'response': gpt_response
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
with print_lock:
|
||||||
|
logging.error(f"处理数据时出错: {str(e)}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def process_dataset(ds, batch_size=20000, max_workers=10):
|
||||||
|
results = []
|
||||||
|
valid_count = 0
|
||||||
|
total_items = len(ds['train'])
|
||||||
|
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||||
|
# 创建进度条
|
||||||
|
with tqdm(total=total_items, desc="处理数据") as pbar:
|
||||||
|
# 提交所有任务
|
||||||
|
future_to_item = {executor.submit(process_single_item, item): i
|
||||||
|
for i, item in enumerate(ds['train'])}
|
||||||
|
|
||||||
|
# 处理完成的任务
|
||||||
|
for future in concurrent.futures.as_completed(future_to_item):
|
||||||
|
result = future.result()
|
||||||
|
if result:
|
||||||
|
with results_lock:
|
||||||
|
results.append(result)
|
||||||
|
valid_count += 1
|
||||||
|
|
||||||
|
# 达到batch_size时保存
|
||||||
|
if len(results) >= batch_size:
|
||||||
|
save_results(results, valid_count // batch_size)
|
||||||
|
results = []
|
||||||
|
|
||||||
|
pbar.update(1)
|
||||||
|
|
||||||
|
# 保存剩余结果
|
||||||
|
if results:
|
||||||
|
save_results(results, (valid_count // batch_size) + 1)
|
||||||
|
|
||||||
|
logging.info(f"处理完成,共处理 {valid_count} 条有效数据")
|
||||||
|
|
||||||
|
def save_results(results, batch_num):
|
||||||
|
# 保存为pickle文件
|
||||||
|
with open(f'batch_{batch_num}.pkl', 'wb') as f:
|
||||||
|
pickle.dump(results, f)
|
||||||
|
|
||||||
|
# 运行处理
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# 设置日志
|
||||||
|
log_file = setup_logging()
|
||||||
|
logging.info("开始处理数据集")
|
||||||
|
logging.info(f"数据集加载完成,共包含 {len(ds)} 条数据")
|
||||||
|
|
||||||
|
process_dataset(ds)
|
Loading…
Reference in New Issue
Block a user