提交获取caption和删除多余文本和测试模型的脚本
This commit is contained in:
parent
655260aabf
commit
59ed3586c7
43
clean_text.py
Normal file
43
clean_text.py
Normal file
@ -0,0 +1,43 @@
|
||||
import pickle
|
||||
|
||||
def clean_text(text):
|
||||
# 将文本反转
|
||||
reversed_text = text[::-1]
|
||||
# 查找第一个句号的位置
|
||||
dot_pos = reversed_text.find('.')
|
||||
|
||||
if dot_pos == -1: # 如果没有找到句号
|
||||
return text
|
||||
|
||||
# 删除句号之前的所有文本,然后再次反转
|
||||
cleaned_text = reversed_text[dot_pos:][::-1]
|
||||
return cleaned_text.strip()
|
||||
|
||||
# 加载原始数据
|
||||
print("正在加载数据...")
|
||||
with open('batch_1.pkl', 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
|
||||
# 处理文本
|
||||
print("正在处理文本...")
|
||||
cleaned_data = []
|
||||
for item in data:
|
||||
cleaned_item = item.copy() # 复制原始数据项
|
||||
cleaned_item['response'] = clean_text(item['response'])
|
||||
cleaned_data.append(cleaned_item)
|
||||
|
||||
# 保存处理后的数据
|
||||
print("正在保存清理后的数据...")
|
||||
with open('batch_1_cleaned.pkl', 'wb') as f:
|
||||
pickle.dump(cleaned_data, f)
|
||||
|
||||
# 打印示例
|
||||
print("\n处理示例:")
|
||||
for i in range(min(3, len(data))):
|
||||
print(f"\n原始文本 {i+1}:")
|
||||
print(data[i]['response'])
|
||||
print(f"\n处理后文本 {i+1}:")
|
||||
print(cleaned_data[i]['response'])
|
||||
|
||||
print(f"\n总数据量: {len(data)}")
|
||||
print("数据已保存到 batch_1_cleaned.pkl")
|
168
test2.py
Normal file
168
test2.py
Normal file
@ -0,0 +1,168 @@
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from urllib.parse import urlparse
|
||||
from torch.profiler import profile, record_function, ProfilerActivity
|
||||
import time
|
||||
import pickle
|
||||
import random
|
||||
from datetime import datetime
|
||||
|
||||
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
||||
IMAGENET_STD = (0.229, 0.224, 0.225)
|
||||
|
||||
def build_transform(input_size):
|
||||
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
||||
transform = T.Compose([
|
||||
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
||||
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=MEAN, std=STD)
|
||||
])
|
||||
return transform
|
||||
|
||||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||||
best_ratio_diff = float('inf')
|
||||
best_ratio = (1, 1)
|
||||
area = width * height
|
||||
for ratio in target_ratios:
|
||||
target_aspect_ratio = ratio[0] / ratio[1]
|
||||
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||||
if ratio_diff < best_ratio_diff:
|
||||
best_ratio_diff = ratio_diff
|
||||
best_ratio = ratio
|
||||
elif ratio_diff == best_ratio_diff:
|
||||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||||
best_ratio = ratio
|
||||
return best_ratio
|
||||
|
||||
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
||||
orig_width, orig_height = image.size
|
||||
aspect_ratio = orig_width / orig_height
|
||||
|
||||
# calculate the existing image aspect ratio
|
||||
target_ratios = set(
|
||||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||||
i * j <= max_num and i * j >= min_num)
|
||||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||||
|
||||
# find the closest aspect ratio to the target
|
||||
target_aspect_ratio = find_closest_aspect_ratio(
|
||||
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||||
|
||||
# calculate the target width and height
|
||||
target_width = image_size * target_aspect_ratio[0]
|
||||
target_height = image_size * target_aspect_ratio[1]
|
||||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||||
|
||||
# resize the image
|
||||
resized_img = image.resize((target_width, target_height))
|
||||
processed_images = []
|
||||
for i in range(blocks):
|
||||
box = (
|
||||
(i % (target_width // image_size)) * image_size,
|
||||
(i // (target_width // image_size)) * image_size,
|
||||
((i % (target_width // image_size)) + 1) * image_size,
|
||||
((i // (target_width // image_size)) + 1) * image_size
|
||||
)
|
||||
# split the image
|
||||
split_img = resized_img.crop(box)
|
||||
processed_images.append(split_img)
|
||||
assert len(processed_images) == blocks
|
||||
if use_thumbnail and len(processed_images) != 1:
|
||||
thumbnail_img = image.resize((image_size, image_size))
|
||||
processed_images.append(thumbnail_img)
|
||||
return processed_images
|
||||
|
||||
def load_image(image_file, input_size=448, max_num=12):
|
||||
# 如果已经是 PIL Image 对象
|
||||
if isinstance(image_file, Image.Image):
|
||||
image = image_file.convert('RGB')
|
||||
# 如果是 URL
|
||||
elif isinstance(image_file, str) and bool(urlparse(image_file).netloc):
|
||||
try:
|
||||
response = requests.get(image_file, timeout=10)
|
||||
response.raise_for_status() # 检查请求是否成功
|
||||
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
except Exception as e:
|
||||
raise ValueError(f"无法从URL加载图片: {str(e)}")
|
||||
# 如果是本地文件路径
|
||||
elif isinstance(image_file, str):
|
||||
image = Image.open(image_file).convert('RGB')
|
||||
# 如果是字节数据
|
||||
elif isinstance(image_file, bytes):
|
||||
image = Image.open(BytesIO(image_file)).convert('RGB')
|
||||
else:
|
||||
raise ValueError(f"不支持的图片格式: {type(image_file)}")
|
||||
|
||||
transform = build_transform(input_size=input_size)
|
||||
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
||||
pixel_values = [transform(image) for image in images]
|
||||
pixel_values = torch.stack(pixel_values)
|
||||
return pixel_values
|
||||
|
||||
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
||||
path = 'Internvl2_5'
|
||||
model = AutoModel.from_pretrained(
|
||||
path,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
use_flash_attn=True,
|
||||
trust_remote_code=True,
|
||||
vision_model = None,
|
||||
language_model = None).eval().cuda()
|
||||
|
||||
# 加载要测试的权重
|
||||
state_dict = torch.load("mlp_epoch_5.pth") # 加载训练好的权重
|
||||
model.load_state_dict(state_dict)
|
||||
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
||||
|
||||
print(model)
|
||||
|
||||
# 测试
|
||||
# 加载数据
|
||||
with open('batch_1.pkl', 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
|
||||
# 随机选择100条数据
|
||||
test_samples = random.sample(data, 100)
|
||||
|
||||
# 创建结果文件
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
results_file = f'test_results_{timestamp}.txt'
|
||||
|
||||
with open(results_file, 'w', encoding='utf-8') as f:
|
||||
for i, test_item in enumerate(test_samples, 1):
|
||||
question = "Identify the brand of the product in the picture, and write a caption including brand information in 200 words."
|
||||
expected_answer = test_item['response']
|
||||
|
||||
try:
|
||||
pixel_values = load_image(test_item['image'], max_num=12).to(torch.bfloat16).cuda()
|
||||
response, _ = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
||||
|
||||
# 写入结果
|
||||
f.write(f"Test case {i}/100:\n")
|
||||
f.write(f"Question: {question}\n")
|
||||
f.write(f"Expected: {expected_answer}\n")
|
||||
f.write(f"Response: {response}\n")
|
||||
f.write("-" * 50 + "\n")
|
||||
|
||||
# 打印进度
|
||||
print(f"Processed {i}/100 samples")
|
||||
|
||||
except Exception as e:
|
||||
f.write(f"Test case {i}/100 - ERROR:\n")
|
||||
f.write(f"Error message: {str(e)}\n")
|
||||
f.write("-" * 50 + "\n")
|
||||
print(f"Error processing sample {i}: {str(e)}")
|
||||
|
||||
print(f"测试完成!结果已保存到文件:{results_file}")
|
168
webdata.py
Normal file
168
webdata.py
Normal file
@ -0,0 +1,168 @@
|
||||
from openai import OpenAI
|
||||
import base64
|
||||
from datasets import load_dataset
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import pickle
|
||||
import logging
|
||||
from datetime import datetime
|
||||
import concurrent.futures
|
||||
import threading
|
||||
from tqdm import tqdm
|
||||
|
||||
ds = load_dataset("DBQ/My.Theresa.Product.prices.France")
|
||||
# 打印数据集信息
|
||||
print(f"数据集加载完成,共包含 {len(ds)} 条数据")
|
||||
|
||||
# 初始化客户端
|
||||
client = OpenAI(
|
||||
api_key='sk-xqbujijjqqmlmlvkhvxeogqjtzslnhdtqxqgiyuhwpoqcjvf',
|
||||
base_url='https://api.siliconflow.cn/v1' # 通义千问API的基础URL
|
||||
)
|
||||
|
||||
# 添加线程锁用于安全打印和保存
|
||||
print_lock = threading.Lock()
|
||||
results_lock = threading.Lock()
|
||||
|
||||
def encode_image_to_base64(image_path):
|
||||
"""将本地图片转换为base64编码"""
|
||||
try:
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode('utf-8')
|
||||
except Exception as e:
|
||||
return None
|
||||
|
||||
# 使用ChatGPT模型
|
||||
def chat_with_gpt(prompt, image_inputs=None):
|
||||
try:
|
||||
messages = []
|
||||
content = [{"type": "text", "text": prompt}]
|
||||
|
||||
if image_inputs:
|
||||
# 确保image_inputs是列表
|
||||
if not isinstance(image_inputs, list):
|
||||
image_inputs = [image_inputs]
|
||||
|
||||
# 处理每张图片
|
||||
for image_input in image_inputs:
|
||||
if image_input.startswith(('http://', 'https://')):
|
||||
image_data = {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": image_input}
|
||||
}
|
||||
else:
|
||||
# 处理本地图片
|
||||
base64_image = encode_image_to_base64(image_input)
|
||||
if base64_image:
|
||||
image_data = {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{base64_image}"
|
||||
}
|
||||
}
|
||||
else:
|
||||
raise Exception("无法读取本地图片")
|
||||
content.append(image_data)
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": content
|
||||
})
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model="Qwen/QVQ-72B-Preview",
|
||||
messages=messages,
|
||||
temperature=0.1, # 降低温度使输出更加确定性
|
||||
top_p=0.2, # 降低采样范围,使输出更加保守
|
||||
max_tokens=200, # 控制回答长度
|
||||
presence_penalty=0.0, # 不鼓励模型谈论新主题
|
||||
frequency_penalty=0.0, # 不惩罚频繁词汇
|
||||
stream=False
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
except Exception as e:
|
||||
return f"发生错误:{str(e)}"
|
||||
|
||||
# 设置日志配置
|
||||
def setup_logging():
|
||||
# 创建日志文件名(包含时间戳)
|
||||
log_filename = f'process_log_{datetime.now().strftime("%Y%m%d_%H%M%S")}.txt'
|
||||
|
||||
# 配置日志
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s',
|
||||
handlers=[
|
||||
logging.FileHandler(log_filename, encoding='utf-8'),
|
||||
logging.StreamHandler() # 同时输出到控制台
|
||||
]
|
||||
)
|
||||
return log_filename
|
||||
|
||||
def process_single_item(item):
|
||||
"""处理单个数据项的函数"""
|
||||
try:
|
||||
image_url = item['imageurl']
|
||||
response = requests.get(image_url)
|
||||
img = Image.open(BytesIO(response.content))
|
||||
|
||||
prompt = f"The brand of the product in the picture is {item['brand']}, write a caption including brand information."
|
||||
gpt_response = chat_with_gpt(prompt, image_url)
|
||||
|
||||
return {
|
||||
'brand': item['brand'],
|
||||
'image': img,
|
||||
'response': gpt_response
|
||||
}
|
||||
except Exception as e:
|
||||
with print_lock:
|
||||
logging.error(f"处理数据时出错: {str(e)}")
|
||||
return None
|
||||
|
||||
def process_dataset(ds, batch_size=20000, max_workers=10):
|
||||
results = []
|
||||
valid_count = 0
|
||||
total_items = len(ds['train'])
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
# 创建进度条
|
||||
with tqdm(total=total_items, desc="处理数据") as pbar:
|
||||
# 提交所有任务
|
||||
future_to_item = {executor.submit(process_single_item, item): i
|
||||
for i, item in enumerate(ds['train'])}
|
||||
|
||||
# 处理完成的任务
|
||||
for future in concurrent.futures.as_completed(future_to_item):
|
||||
result = future.result()
|
||||
if result:
|
||||
with results_lock:
|
||||
results.append(result)
|
||||
valid_count += 1
|
||||
|
||||
# 达到batch_size时保存
|
||||
if len(results) >= batch_size:
|
||||
save_results(results, valid_count // batch_size)
|
||||
results = []
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
# 保存剩余结果
|
||||
if results:
|
||||
save_results(results, (valid_count // batch_size) + 1)
|
||||
|
||||
logging.info(f"处理完成,共处理 {valid_count} 条有效数据")
|
||||
|
||||
def save_results(results, batch_num):
|
||||
# 保存为pickle文件
|
||||
with open(f'batch_{batch_num}.pkl', 'wb') as f:
|
||||
pickle.dump(results, f)
|
||||
|
||||
# 运行处理
|
||||
if __name__ == "__main__":
|
||||
# 设置日志
|
||||
log_file = setup_logging()
|
||||
logging.info("开始处理数据集")
|
||||
logging.info(f"数据集加载完成,共包含 {len(ds)} 条数据")
|
||||
|
||||
process_dataset(ds)
|
Loading…
Reference in New Issue
Block a user