Fortrain/qw/open_r1/evaluate.py

86 lines
2.4 KiB
Python
Raw Normal View History

2025-03-31 15:56:36 +08:00
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Custom evaluation tasks for LightEval."""
from lighteval.metrics.dynamic_metrics import (
ExprExtractionConfig,
LatexExtractionConfig,
multilingual_extractive_match_metric,
)
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.utils.language import Language
metric = multilingual_extractive_match_metric(
language=Language.ENGLISH,
fallback_mode="first_match",
precision=5,
gold_extraction_target=(LatexExtractionConfig(),),
pred_extraction_target=(ExprExtractionConfig(), LatexExtractionConfig()),
aggregation_function=max,
)
def prompt_fn(line, task_name: str = None):
"""Assumes the model is either prompted to emit \\boxed{answer} or does so automatically"""
return Doc(
task_name=task_name,
query=line["problem"],
choices=[line["solution"]],
gold_index=0,
)
# Define tasks
aime24 = LightevalTaskConfig(
name="aime24",
suite=["custom"],
prompt_function=prompt_fn,
hf_repo="HuggingFaceH4/aime_2024",
hf_subset="default",
hf_avail_splits=["train"],
evaluation_splits=["train"],
few_shots_split=None,
few_shots_select=None,
generation_size=32768,
metric=[metric],
version=1,
)
math_500 = LightevalTaskConfig(
name="math_500",
suite=["custom"],
prompt_function=prompt_fn,
hf_repo="HuggingFaceH4/MATH-500",
hf_subset="default",
hf_avail_splits=["test"],
evaluation_splits=["test"],
few_shots_split=None,
few_shots_select=None,
generation_size=32768,
metric=[metric],
version=1,
)
# Add tasks to the table
TASKS_TABLE = []
TASKS_TABLE.append(aime24)
TASKS_TABLE.append(math_500)
# MODULE LOGIC
if __name__ == "__main__":
print([t["name"] for t in TASKS_TABLE])
print(len(TASKS_TABLE))