Fortrain/qw/open_r1/grpo.py

215 lines
7.9 KiB
Python
Raw Normal View History

2025-03-31 15:56:36 +08:00
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# import debugpy
# try:
# # 5678 is the default attach port in the VS Code debug configurations. Unless a host and port are specified, host defaults to 127.0.0.1
# debugpy.listen(("localhost", 9501))
# print("Waiting for debugger attach")
# debugpy.wait_for_client()
# except Exception as e:
# pass
import os
import re
from datetime import datetime
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset, load_from_disk
from transformers import Qwen2VLForConditionalGeneration
from math_verify import parse, verify
from open_r1.trainer import VLMGRPOTrainer
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config
@dataclass
class GRPOScriptArguments(ScriptArguments):
"""
Script arguments for the GRPO training script.
Args:
reward_funcs (`list[str]`):
List of reward functions. Possible values: 'accuracy', 'format'.
"""
reward_funcs: list[str] = field(
default_factory=lambda: ["accuracy", "format"],
metadata={"help": "List of reward functions. Possible values: 'accuracy', 'format'"},
)
max_pixels: Optional[int] = field(
default=12845056,
metadata={"help": "Maximum number of pixels for the image"},
)
min_pixels: Optional[int] = field(
default=3136,
metadata={"help": "Minimum number of pixels for the image"},
)
def accuracy_reward(completions, solution, **kwargs):
"""Reward function that checks if the completion is correct using either symbolic verification or exact string matching."""
contents = [completion[0]["content"] for completion in completions]
rewards = []
current_time = datetime.now().strftime("%d-%H-%M-%S-%f")
for content, sol in zip(contents, solution):
reward = 0.0
# Try symbolic verification first
try:
answer = parse(content)
if float(verify(answer, parse(sol))) > 0:
reward = 1.0
except Exception:
pass # Continue to next verification method if this fails
# If symbolic verification failed, try string matching
if reward == 0.0:
try:
# Extract answer from solution if it has think/answer tags
sol_match = re.search(r'<answer>(.*?)</answer>', sol)
ground_truth = sol_match.group(1).strip() if sol_match else sol.strip()
# Extract answer from content if it has think/answer tags
content_match = re.search(r'<answer>(.*?)</answer>', content)
student_answer = content_match.group(1).strip() if content_match else content.strip()
# Compare the extracted answers
if student_answer == ground_truth:
reward = 1.0
except Exception:
pass # Keep reward as 0.0 if both methods fail
rewards.append(reward)
if os.getenv("DEBUG_MODE") == "true":
log_path = os.getenv("LOG_PATH")
# local_rank = int(os.getenv("LOCAL_RANK", 0))
with open(log_path, "a") as f:
f.write(f"------------- {current_time} Accuracy reward: {reward} -------------\n")
f.write(f"Content: {content}\n")
f.write(f"Solution: {sol}\n")
return rewards
def format_reward(completions, **kwargs):
"""Reward function that checks if the completion has a specific format."""
pattern = r"<think>.*?</think>\s*<answer>.*?</answer>"
completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]
reward_funcs_registry = {
"accuracy": accuracy_reward,
"format": format_reward,
}
SYSTEM_PROMPT = (
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>"
)
def main(script_args, training_args, model_args):
# Get reward functions
reward_funcs = [reward_funcs_registry[func] for func in script_args.reward_funcs]
print("reward_funcs:", reward_funcs)
# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
# Format into conversation
def make_conversation(example):
return {
"prompt": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
],
}
# def make_conversation_image(example):
# return {
# "prompt": [
# {"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
# {
# "role": "user",
# "content": [
# {"type": "image"},
# {"type": "text", "text": example["problem"]},
# ],
# },
# ],
# }
QUESTION_TEMPLATE = "{Question} Output the thinking process in <think> </think> and final answer (number) in <answer> </answer> tags."
def make_conversation_image(example):
return {
"prompt": [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": QUESTION_TEMPLATE.format(Question=example["problem"])},
],
},
],
}
if "image" in dataset[script_args.dataset_train_split].features:
print("has image in dataset")
dataset = dataset.map(make_conversation_image) # Utilize multiprocessing for faster mapping
# dataset = dataset.remove_columns(["original_question", "original_answer"])
else:
print("no image in dataset")
dataset = dataset.map(make_conversation)
dataset = dataset.remove_columns("messages")
trainer_cls = VLMGRPOTrainer
# Initialize the GRPO trainer
trainer = trainer_cls(
model=model_args.model_name_or_path,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
peft_config=get_peft_config(model_args),
attn_implementation=model_args.attn_implementation,
max_pixels=script_args.max_pixels,
min_pixels=script_args.min_pixels,
torch_dtype=model_args.torch_dtype,
)
# Train and push the model to the Hub
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
if __name__ == "__main__":
parser = TrlParser((GRPOScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)