Fortrain/zhtrain.py

235 lines
7.5 KiB
Python
Raw Permalink Normal View History

2025-02-13 17:15:57 +08:00
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'
import pickle
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from predata import prepare_training_data
from transformers import AutoTokenizer, AutoModel
import torch.nn as nn
from torch.optim import AdamW
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained("Internvl2_5")
# 加载处理好的数据
print("正在加载数据...")
with open('valid_products.pkl', 'rb') as f:
data = pickle.load(f)
print(f"成功加载数据,共 {len(data)} 条记录")
class ProductDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
question = "Tell me the product name in the picture."
answer = "The product name is: " + item['name']
# 直接使用prepare_training_data处理所有数据
training_data = prepare_training_data(
question=question,
answer=answer,
tokenizer=self.tokenizer,
image_path=item['image'] # 直接传入PIL Image对象
)
return training_data
# 创建数据集实例
dataset = ProductDataset(data, tokenizer)
# 测试输出第一条数据看看
sample = dataset[0]
print("\n数据样例:")
print(f"输入形状: {sample['input_ids'].shape}")
print(f"图片张量形状: {sample['pixel_values'].shape}")
print(f"标签形状: {sample['labels'].shape}")
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
path = 'Internvl2_5'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
vision_model = None,
language_model = None).train().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# 加载之前训练的权重
print("正在加载预训练权重 model_epoch_5.pth ...")
model.load_state_dict(torch.load('model_epoch_5.pth'))
print("成功加载预训练权重")
def prepare_model_for_training(model, cast_trainable_params_to_fp32=True):
print("正在设置模型参数...")
# 冻结vision_model
for param in model.vision_model.parameters():
param.requires_grad_(False)
# 冻结language_model
for param in model.language_model.parameters():
param.requires_grad_(False)
# 设置mlp1为可训练并可选转换为fp32
# for param in model.mlp1.parameters():
# if cast_trainable_params_to_fp32:
# param.data = param.data.to(torch.float32)
# 打印可训练参数数量
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"可训练参数数量: {trainable_params}")
return model
# 准备模型
model = prepare_model_for_training(model)
# 只对可训练参数创建优化器
optimizer = AdamW(
[p for p in model.parameters() if p.requires_grad],
lr=1e-4, # 学习率
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.01
)
def custom_collate_fn(batch):
"""
自定义collate函数来处理变长序列
"""
# 获取batch中最大的序列长度
max_len = max([b['input_ids'].size(1) for b in batch])
batch_size = len(batch)
# 创建填充后的张量
input_ids = torch.zeros((batch_size, max_len), dtype=batch[0]['input_ids'].dtype)
attention_mask = torch.zeros((batch_size, max_len), dtype=batch[0]['attention_mask'].dtype)
labels = torch.full((batch_size, max_len), -100, dtype=batch[0]['labels'].dtype) # 用-100填充标签
# 填充每个样本
for i, item in enumerate(batch):
seq_len = item['input_ids'].size(1)
input_ids[i, :seq_len] = item['input_ids'][0, :seq_len]
attention_mask[i, :seq_len] = item['attention_mask'][0, :seq_len]
labels[i, :seq_len] = item['labels'][0, :seq_len]
# 处理pixel_values (这个应该是固定大小的)
pixel_values = torch.stack([item['pixel_values'] for item in batch])
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels,
'pixel_values': pixel_values
}
# 使用自定义的collate_fn创建DataLoader
train_loader = DataLoader(
dataset,
batch_size=5, # 可以根据需要调整
shuffle=True,
pin_memory=torch.cuda.is_available(),
collate_fn=custom_collate_fn # 使用自定义的collate函数
)
# 计算img_context_token_id
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
def extract_feature(model, pixel_values):
# 移除多余的维度
if pixel_values.dim() == 5: # [batch_size, 1, 3, 448, 448]
pixel_values = pixel_values.squeeze(1) # 变成 [batch_size, 3, 448, 448]
# 使用vision_model提取特征
vit_embeds = model.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True
).last_hidden_state
vit_embeds = vit_embeds[:, 1:, :] # 移除CLS token
# 重塑并处理特征
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = model.pixel_shuffle(vit_embeds, scale_factor=model.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = model.mlp1(vit_embeds)
return vit_embeds
# 训练循环
num_epochs = 40 # 修改为40个epochs
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_idx, batch in enumerate(train_loader):
# 将数据移到GPU
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
pixel_values = batch['pixel_values'].to(device)
# 提取图像特征
vit_embeds = extract_feature(model, pixel_values)
# 计算输入嵌入
input_embeds = model.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# 替换图像上下文token的嵌入
input_ids_flat = input_ids.reshape(B * N)
selected = (input_ids_flat == img_context_token_id)
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
# 恢复原始形状
input_embeds = input_embeds.reshape(B, N, C)
# 前向传播
outputs = model.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
labels=labels,
return_dict=True
)
loss = outputs.loss
total_loss += loss.item()
# 反向传播
loss.backward()
optimizer.step()
optimizer.zero_grad()
# 每100步打印一次loss
if batch_idx % 100 == 0:
print(f'Epoch: {epoch}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
# 每个epoch结束打印平均loss
avg_loss = total_loss / len(train_loader)
print(f'Epoch {epoch} completed. Average Loss: {avg_loss:.4f}')
# 每10个epoch保存一次模型
if (epoch + 1) % 10 == 0:
save_path = f'model_epoch_{epoch+1}.pth'
print(f"保存模型权重到 {save_path}")
torch.save(model.state_dict(), save_path)